sc-205367

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Lauric Acid

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255

(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Used in soaps, detergents, as wetting agents, alkyd resins, cosmetics and food additives. Regeant

SYNONYMS

C12-H24-O2, CH3(CH2)10COOH, "dodecanoic acid", "n-dodecanoic acid", "n-dodecanoic acid", "dodecoic acid", "laurostearic acid", "1-undecanecarboxylic acid", "1-undecanecarboxylic acid", "duodecylic acid", "neo-fat 12"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Irritating to eyes and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

sc-205367

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- Ingestion of anionic surfactants may produce diarrhea, bloated stomach, and occasional vomiting.

FYF

- Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals. Prolonged eye contact may cause inflammation characterized by a temporary redness of the conjunctiva (similar to windburn).
- Direct eye contact with some anionic surfactants in high concentration can cause severe damage to the cornea. Low concentrations can cause discomfort, excess blood flow, and corneal clouding and swelling. Recovery may take several days.

SKIN

- The material may cause mild but significant inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.
- Anionic surfactants can cause skin redness and pain, as well as a rash. Cracking, scaling and blistering can occur.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS


■ Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified using animal models); nevertheless exposure by all routes should be minimized as a matter of course.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

-

sc-205367

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- · Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

_

- If fumes or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

NOTES TO PHYSICIAN

■ Treat symptomatically.

	Section 5 - FIRE FIGHTING MEASURES	
Vapor Pressure (mmHg):	0.975 @ 121C	
Upper Explosive Limit (%):	Not available.	
Specific Gravity (water=1):	0.883	
Lower Explosive Limit (%):	Not available.	

EXTINGUISHING MEDIA

.

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- 0----
- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and

sc-205367

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material. May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Safety Glasses.

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- -
- · Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- · Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

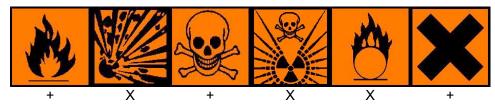
sc-205367

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.


RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	IVVA	IVVA	SIEL	SIEL	Реак	Реак	IVVA	Notes
Source	Material	ppm	mg/m³	ppm	mg/m³	ppm	mg/m³	F/CC	Notes

sc-205367

Material Safety Data Sheet

Hazard Alert Code Key:	EXTREME	HIGH		MODERATE	LOW
Canada - Alberta Occupational Exposure Limits	lauric acid (Kerose as total hydrocarb		200		
Canada - Ontario Occupational Exposure Limits	•	auric acid (Diesel fuel, as total hydrocarbons, vapour and aerosol)			Skin
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	•	auric acid (Diesel fuel as total ,		150	Skin
Canada - Alberta Occupational Exposure Limits	lauric acid (Diesel hydrocarbons)	fuel, as total	100		
US - Oregon Permissible Exposure Limits (Z3)	lauric acid (Inert o Dust: (d) Total dus		10		*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	lauric acid (Inert o Dust: (d) Respirat		5		
US OSHA Permissible Exposure Levels (PELs) - Table Z3	lauric acid (Inert o Dust: (d) Total dus		15		
US - Hawaii Air Contaminant Limits	lauric acid (Particumise regulated - To		10		
US - Hawaii Air Contaminant Limits	lauric acid (Particumise regulated - Refraction)		5		
US - Oregon Permissible Exposure Limits (Z3)	lauric acid (Inert o Dust: (d) Respirat		5		*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	lauric acid (Particu otherwise regulate fraction)		5		
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	lauric acid (Particu otherwise regulate Respirable fraction	ed (PNOR)(f)-	5		
US - Michigan Exposure Limits for Air Contaminants	lauric acid (Particu otherwise regulate dust)		5		
Canada - British Columbia Occupational Exposure Limits	lauric acid (Diesel hydrocarbons, Inh		100 (V)		Skin
US - Oregon Permissible Exposure Limits (Z3)	trans-stilbene (Ine Dust: (d) Total dus		10		*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	trans-stilbene (Ine Dust: (d) Respirat		5		
US OSHA Permissible Exposure Levels (PELs) - Table Z3	trans-stilbene (Ine Dust: (d) Total dus		15		
US - Hawaii Air Contaminant Limits	trans-stilbene (Pa other wise regulat		10		
US - Hawaii Air Contaminant Limits	trans-stilbene (Pa other wise regulat fraction)		5		
US - Oregon Permissible Exposure Limits (Z3)	trans-stilbene (Ine Dust: (d) Respirat		5		*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	trans-stilbene (Pa otherwise regulate fraction)		5		

sc-205367

Material Safety Data Sheet

The Power to Owntie

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
US - Wyoming Toxic and Ha Substances Table Z1 Limits Contaminants	· ·	ed (PNOR)(f)- 5		
US - Michigan Exposure Lim Air Contaminants	trans-stilbene (Pa otherwise regulat dust)			
Canada - British Columbia Occupational Exposure Limi	trans-stilbene (Die ts total hydrocarbon	100	0 (V)	Skin

MATERIAL DATA

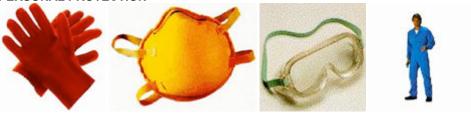
LAURIC ACID:

TRANS-STILBENE:

■ Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.


TRANS-STILBENE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- .
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

sc-205367

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.
- •
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may
 be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a
 complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of

sc-205367

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW

exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a
 certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer	

loading, crusher dusts, gas discharge (active generation into zone of 1-2.5 m/s (200-500 f/min.) rapid air motion)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air 2.5-10 m/s (500-2000 f/min.) motion).

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

Floats on water.

State	Divided solid	Molecular Weight	200.36
Melting Range (°F)	111.2- 114.8	Viscosity	Not Available
Boiling Range (°F)	437 (100 mm Hg)	Solubility in water (g/L)	Immiscible
Flash Point (°F)	>235.4	pH (1% solution)	Not applicable.
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available.	Vapor Pressure (mmHg)	0.975 @ 121C
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	0.883

sc-205367

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
Lower Explosive Limit (%)	Not availabl	e. Relative Va	apor Density (air=1)	Not Applicable
Volatile Component (%vol)	Not available	e. Evaporation	n Rate 1	Not Applicable

APPEARANCE

Colourless, needle-like crystals or powder, with a slight odour of bay oil. Insoluble in water, but soluble in benzene, alcohol, ether and petroleum ether. Combustible. Occurs as a fatty acid in many vegetable fats as its glyceride.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid strong acids, bases.

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

lauric acid

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Oral (rat) LD50: 12000 mg/kg Skin (rabbit): 500 mg - Mild

Intravenous (Mouse) LD50: 131 mg/kg Eye (rabbit): 100 mg - Mild

■ The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Fatty acid salts are of low acute toxicity. Their skin and eye irritation potential is chain length dependent and decreases with increasing chain length - they are poorly absorbed through the skin nor are they skin sensitisers. The available repeated dose toxicity data demonstrate the low toxicity of the fatty acids and their salts. Also, they are not considered to be mutagenic, genotoxic or carcinogenic, and are not reproductive or developmental toxicants. Accidental ingestion of fatty acid salt containing detergent products is not expected to result in any significant adverse health effects. This assessment is based on toxicological data demonstrating the low acute oral toxicity of fatty acid salts and the fact that not a single fatality has been reported in the UK following accidental ingestion of detergents containing fatty acid salts. Also in a report published by the German Federal Institute for Health Protection of Consumers and Veterinary Medicine, detergent products were not mentioned as dangerous products with a high incidence if poisoning. The estimated total human exposure to fatty acid salts, from the different exposure scenarios for the handling and use of detergent products containing fatty acid salts, showed a margin of exposure (MOE) of 258,620. This extremely large MOE is large enough to be reassuring with regard to the relatively small variability of the hazard data on which it is based. Also, in the UK, the recommended dietary fatty acid intake by the Department of Health is about 100 g of fatty acids per day or 1.7 g (1700 mg) of fatty acids per kilogram body weight per day. This exposure is several orders of magnitude above that resulting from exposure to fatty acid salts in household cleaning products. Based on the available data, the use of fatty acid salts in household detergent and cleaning products does not raise any safety concerns with regard to consumer.

SKIN

lauric acid	Canada - Ontario Occupational Exposure Limits - Skin	Notes	Skin
lauric acid	US AIHA Workplace Environmental Exposure Levels (WEELs) - Skin	Notes	Skin
lauric acid	Canada - Quebec Permissible Exposure Values for Airborne Contaminants - Skin (French)	Notes	Skin
lauric acid	Canada - British Columbia Occupational Exposure Limits - Skin	Notation	Skin

sc-205367

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

lauric acid Canada - Alberta Occupational Exposure Limits - Skin Substance Interaction 1

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

TRANS-STILBENE:

LAURIC ACID:

■ DO NOT discharge into sewer or waterways.

LAURIC ACID:

■ log Pow (Verschueren 1983):

4.2

- Octanol/ water partition coefficients cannot easily be determined for surfactants because one part of the molecule is hydrophilic and the other part is hydrophobic. Consequently they tend to accumulate at the interface and are not extracted into one or other of the liquid phases. As a result surfactants are expected to transfer slowly, for example, from water into the flesh of fish. During this process, readily biodegradable surfactants are expected to be metabolized rapidly during the process of bioaccumulation. This was emphasized by the OECD Expert Group stating that chemicals are not to be considered to show bioaccumulation potential if they are readily biodegradable. Several anionic and nonionic surfactants have been investigated to evaluate their potential to bioconcentrate in fish. BCF values (BCF bioconcentration factor) ranging from 1 to 350 were found. These are absolute maximum values resulting from the radio labeling technique used. In all these studies, substantial oxidative metabolism was found resulting in the highest radioactivity in the gall bladder. This indicates liver transformation of the parent compound and biliary excretion of the metabolized compounds, so that "real" bioconcentration is overstated. After correction it can be expected that "real" parent BCF values are one order of magnitude less than those indicated above, i.e. "real" BCF is <100. Therefore the usual data used for classification by EU Directives to determine whether a substance is "Dangerous to the Environment" has little bearing on whether the use of the surfactant is environmentally acceptable.
- Fatty acid soaps are widely used in household cleaning products, cosmetics, lubricants (and other miscellaneous industrial applications) and coatings. Uses in household cleaning include fabric washing products, fabric conditioners, laundry additives, and surface and toilet cleaners. These uses cover chain lengths of C10-22 predominantly with counter-ions of sodium and potassium.

There are a number of acute data for fatty acids and fatty acid salts to aquatic organisms although there is a predominance of data for fatty acid. There are few toxicity values for terrestrial organisms. Data availability / quality covering all the taxonomic groups for specific fatty acid salt chain lengths is poor. The chronic data set is very limited.

For chain lengths >C12, solubility decreases to a degree where an adverse effect would not be expected in the environment due to reduced biovailability. Data for longer chain lengths have been generated using solvents which makes interpretation more difficult.

The most of few available data indicate low toxicity towards aquatic organisms with EC/LC50 values above 1000 mg/l. However, EC/LC50 values below 100 mg/l are not unusual either.

Several tests concerning biodegradation are available. All tests showed that fatty acids and lipids are readily biodegradable .

No experimental bioaccumulation data appear to be available but log Kow data from various sources. are higher than 4, which indicates that fatty acids and natural lipids have a potential for bioaccumulating in aquatic organisms.

Fish: LC50 (96 h): 0.9-1.37 mg/L

TRANS-STILBENE:

- Very toxic to aquatic organisms.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility lauric acid LOW MED MED trans-stilbene HIGH LOW

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

sc-205367

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility
 can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

lauric acid (CAS: 143-07-7) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)","Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)","GESAMP/EHS Composite List - GESAMP Hazard Profiles","IMO IBC Code Chapter 17: Summary of minimum requirements","International Council of Chemical Associations (ICCA) - High Production Volume List","OECD Representative List of High Production Volume (HPV) Chemicals","US Cosmetic Ingredient Review (CIR) Cosmetic ingredients found safe as used","US EPA High Production Volume Program Chemical List","US Food Additive Database","US Toxic Substances Control Act (TSCA) - Inventory" Regulations for ingredients

trans-stilbene (CAS: 103-30-0) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Repeated exposure potentially causes skin dryness and cracking*.
- * (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance CAS Suggested codes trans- stilbene 103- 30- 0 N R50/53

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:
- A list of reference resources used to assist the committee may be found at www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

sc-205367

Material Safety Data Sheet

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW

Issue Date: Sep-4-2009 Print Date:May-7-2010