Carveol

sc-205623

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Carveol

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFΡΔ

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and

Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436

2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

■ Intermediate.

SYNONYMS

C10-H16-O, L-carveol, L-carveol, 1-methyl-4-isopropenyl-6-cyclohexen-2-ol, 1-methyl-4-isopropenyl-6-cyclohexen-2-ol, "L-p-mentha-6, 8-dien-2-ol", "L-p-mentha-6, 8-dien-2-ol"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

Irritating to eyes, respiratory system and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where preexisting organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort

may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.

EYE

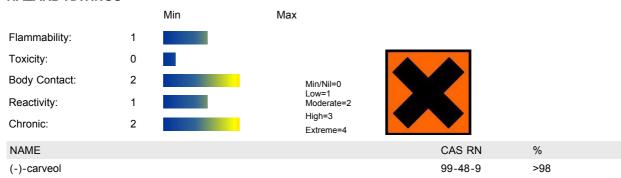
■ This material can cause eye irritation and damage in some persons.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- The material has NOT been classified as "harmful by inhalation". This is because of the lack of corroborating animal or human evidence. In the absence of such evidence, care should nevertheless be taken to ensure exposure is kept to a minimum and that suitable control measures be used, in an occupational setting to control vapors, fumes and aerosols.
- Inhalation hazard is increased at higher temperatures.


CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

- •
- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- · If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- · Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- · Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- · Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Vapour Pressure (mmHG):	Not available
Upper Explosive Limit (%):	Not available
Specific Gravity (water=1):	1.496
Lower Explosive Limit (%):	Not available

EXTINGUISHING MEDIA

.

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- · Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- · Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- · If safe to do so, remove containers from path of fire.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

ı

- Combustible.
- Slight fire hazard when exposed to heat or flame.
- · Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- · May emit acrid smoke.
- · Mists containing combustible materials may be explosive.

Combustion products include: carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

May emit poisonous fumes

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses

Chemical goggles.

Gloves:

Respirator:

Type A Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapors and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable labeled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources. Increase ventilation.
- Stop leak if safe to do so.
- · Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- · If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- . DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- · DO NOT enter confined spaces until atmosphere has been checked.
- · Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- · Work clothes should be laundered separately.
- Use good occupational work practice.
- · Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

RECOMMENDED STORAGE METHODS

- _
- · Metal can or drum
- · Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- · Store in a cool, dry, well-ventilated area.
- · Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- · Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
Canada - Alberta Occupational Exposure Limits	(-)-carveol (Turpentine and selected monoterpenes)	20	111						
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	(-)-carveol (Turpentine and selected monoterpenes)	20		30					SEN

MATERIAL DATA

(-)-CARVEOL:

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion

animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:

- · cause inflammation
- · cause increased susceptibility to other irritants and infectious agents
- · lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- · acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

_

- · Safety glasses with side shields.
- · Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ Wear chemical protective gloves, eg. PVC.

Wear safety footwear or safety gumboots, eg. Rubber.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Neoprene gloves

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

RESPIRATOR

■ Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

(volume)	Maximum Protection Factor	Half-face Respirator	Full-Face Respirator
1000	10	A-1	-
1000	50	-	A-1
5000	50	Airline*	-
5000	100	-	A-2
10000	100	-	A-3
	100+		Airline* *

* - Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

■ General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear an approved respirator An approved respirator (supplied air type) may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in

warehouses and enclosed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant: Air Speed:

solvent, vapors, degreasing etc., evaporating from tank (in still 0.25-0.5 m/s (50-100 f/min)

air).

aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray

drift, plating acid fumes, pickling (released at low velocity into zone of active generation)

0.5-1 m/s (100-200 f/min.)

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)

1-2.5 m/s (200-500 f/min.)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)

2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range

Upper end of the range

1: Room air currents minimal or favorable to capture

1: Disturbing room air currents

2: Contaminants of low toxicity or of nuisance value only.

2: Contaminants of high toxicity3: High production, heavy use

3: Intermittent, low production.4: Large hood or large air mass in motion

4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid.

Does not mix with water.

Sinks in water.

State	Liquid	Molecular Weight	152.24
Melting Range (°F)	Not available	Viscosity	Not Available
Boiling Range (°F)	438.8- 440.6 (751 mm)	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	208.994	pH (1% solution)	Not applicable.
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Not available
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	1.496
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	>1
Volatile Component (%vol)	Not available	Evaporation Rate	Not available

APPEARANCE

Liquid; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

(-)-carveol

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Oral (rat) LD50: 3000 mg/kg

Skin (rabbit): 500 mg/24h

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The carvone family consists of terpenoid ketones, secondary alcohols and related esters containing a 1-menthyl carbon skeleton. Seven of the substances in this group have been reported to occur naturally in foods, including fruits, spices, and berries. (-)-Carvone (55-75%) has been reported in the oils of Mentha (spearmint). (+)-Carvone (20-75%) has been reported in Carum (caraway) and Anethum (dill).

The Joint FAO/WHO Expert Committee on Food Additives (JECFAA established a temporary ADI of 0-1 mg/kg bw was established for (+)- and (-)-carvone at the twenty-third meeting, which was extended at the twenty-fifth, twenty-seventh, thirtieth, and thirty-third meetings. At its thirty-seventh meeting, the Committee determined that the (+) and (-) enantiomers should be evaluated separately. Owing to lack of data on (-)-carvone per se, the temporary ADI for (-)-carvone was not extended. In its review of (+)-carvone, the Committee considered a long-term study of toxicity and carcinogenicity in mice, short-term studies of toxicity in mice and rats, and tests for mutagenicity in vitro. On the basis of a NOEL of 93 mg/kg bw per day in a three-month study of toxicity in rats, the Committee established an ADI for (+)-carvone of 0-1 mg/kg bw per day.

Currently the Committee has no safety concerns for any of the carvones based on current levels of intake.

Threshold of concern is 1800 ug/day for class I and 540 ug/day for class II.

Acute toxicity: Carvone (unspecified stereochemistry) was administered to four male Wistar rats for 14 days at a dietary level of 0 or 1% (equivalent to 500 mg/kg bw per day). Significant increases in serum cholesterol and triacylglycerol concentrations were reported in rats given carvone when compared with the controls. Significant decreases in food consumption and body weights were also reported in treated animals.

Repeat dose toxicity: Groups of five male and five female Osborne-Mendel weanling rats were fed a diet containing carvone at a concentration of 1000 mg/kg (equivalent to 50 mg/kg bw per day) for 27-28 weeks, 2500 mg/kg (equivalent to 125 mg/kg bw per day) for one year, or 10 000 mg/kg (equivalent to 750 mg/kg bw per day) for 16 weeks. Although the stereochemistry of the test material was unspecified, a survey of industrial producers of carvone who actively marketed carvone during the period of the study (1960-70) indicated that the material in commerce in the United States at that time was the (-) isomer. Depressed body-weight gain and testicular atrophy at a dose of 750 mg/kg bw per day were the only reported effects. The NOEL was 125 mg/kg bw per day

Genotoxicity: In a study to examine the anti-carcinogenic properties of carvone, groups of 15 female A/J mice were given 0.2 mmol (30 mg) (+)-carvone by intubation I h before administration of N-nitrosodiethylamine at a dose of 20 mg/kg bw once a week for eight weeks by intubation. The animals were necropsied 26 weeks after the initial dose of nitrosamine. (+)-Carvone inhibited forestomach tumour formation, with a > 63% reduction in the mean number of papillomas per mouse when compared with the controls. The number of pulmonary adenomas in mice given (+)-carvone was significantly less (34%) than in control animals. In a study to examine the ability of carvone and carvyl derivatives to induce enzymes for the detoxification of carcinogens, glutathione S-transferase activity increased and glutathione content decreased in various tissues of groups of A/J mice given repeated oral doses of carvone and 10 carvyl derivatives. Groups of four female A/J mice were given three oral doses, each containing 20 mg of a carvyl derivative in cottonseed oil, by gavage over two days. The test substances included alpha,beta-unsaturated ketones, (+)-carvone, 8,9-dihydro-carvone, 9-hydroxycarvone, 9-acetoxycarvone, the unconjugated ketones 2,3-dihydrocarvone and carvomenthone, and five carvyl alcohol derivatives. Cytosolic glutathione S-transferase activity and acid-soluble sulfhydryl levels were measured in mouse liver, forestomach, lung, and small and large bowel mucosa. Treatment with carvone and, to a lesser degree, other alpha,beta-unsaturated ketones increased the activity of glutathione Stransferase in all tissues by two to four times over that in controls and in animals treated with other carvyl derivatives. Carvone intake was associated with a decrease in glutathione content in the liver, lung, and large-bowel mucosa. Carvone rapidly conjugated with glutathione in the absence of glutathione S-transferase

Metabolic fate: In experiments in rabbits, carvone was reduced to carveol, which was converted to the glucuronic acid

conjugate and excreted in urine. A racemic mixture of carvone was reported to undergo side-chain oxidation in rabbits. Carvone is also metabolised in rabbits by hydrogenation of the endocyclic double bond to yield 8-menthen-2-ol (dihydrocarveol), which is excreted unchanged. The glucuronic acid conjugate of dihydrocarveol has been detected in the urine

Carvone has been detected unchanged in the urine of humans, presumably arising from its dietary intake

Terpenoid esters: Each of the three esters would be expected to be hydrolysed to its corresponding alcohol and carboxylic acid by carboxylesterases, which predominate in hepatocytes. Esters of carveol and dihydrocarveol would be expected to be hydrolysed to yield carveol and dihydrocarveol, respectively, and the corresponding saturated aliphatic carboxylic acids.

Terpenoid alcohols and ketones: The terpenoid alcohols resulting from ester hydrolysis and their corresponding ketones are metabolized like other alicyclic terpenoid ketones and secondary alcohols. Five detoxification pathways have been identified. There is considerable evidence that ketones are reduced to the corresponding secondary alcohol and conjugated mainly with glucuronic acid. In rodents, but probably not in humans, the conjugate is excreted primarily into the bile, where it may be hydrolysed to yield the free alcohol. The alcohol may then enter enterohepatic circulation and be excreted by the kidney. If a double bond is present in the molecule, the metabolite may be hydrogenated to the dihydro derivative. Ketones are reduced primarily by cytosolic carbonyl reductase, and the reaction is stereoselective to yield a mixture of diastereomeric alcohols. Oxidation of the side-chain has been observed for other acyclic and alicyclic ketones

Alicyclic ketones containing an alkyl or alkenyl side-chain may undergo oxidation of the side-chain to form polar metabolites, which are excreted as the glucuronic acid or sulfate conjugates in the urine and, to a lesser extent, in the faeces.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: (-)-CARVEOL:

DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient Mobility Persistence: Water/Soil Persistence: Air Bioaccumulation (-)-carveol IOW LOW HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction.
- Reuse
- Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury or incinerate residue at an approved site.
- · Recycle containers if possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

(-)-carveol (CAS: 99-48-9) is found on the following regulatory lists;

"US Cosmetic Ingredient Review (CIR) Cosmetic ingredients found safe, with qualifications","US Food Additive Database","US Toxic Substances Control Act (TSCA) - Inventory'

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.

 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jan-9-2010 Print Date:Apr-21-2010