Penicillic acid

Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Mycotoxin and antibiotic produced by certain strains of Penicillium and Aspergillus. Found on many fruits and vegetables.

SYNONYMS

C8-H10-O4, "3-methoxy-5-methyl-4-oxo-2, 5-hexadienoic acid", "3-methoxy-5-methyl-4-oxo-2, 5-hexadienoic acid", "gamma-keto-beta-methoxy-delta-methylene-delta(sup alpha)-hexenoic acid", "pencillic acid", mycotoxin

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK Toxic by inhalation, in contact with skin and if swallowed.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

• Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 gram may be fatal or may produce serious damage to the health of the individual.

• Limited evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure.

Penicillins can cause temporary diarrhea, nausea, heartburn and itchiness of the anus. They are fairly safe in the nonallergic. Hypersensitive patients can present with acute inflammation of the kidneys and anaphylactic shock, which can cause death within minutes. A generalized sensitivity reaction can occur in 1 to 3 weeks. This includes hives, swellings (especially of the face, lips and tissues around the mouth), redness of the skin, skin shedding, purple discoloration, extreme weakness, abdominal cramps, fever, joint pain, constriction of airways, severe asthma, chest pains, low blood pressure, cyanosis, collapse of circulation and lung swelling. Serum sickness type syndromes include enlarged spleen, joint pain and inflammation, muscle pain, general unwellness, lymph disorders and mental changes. There may be cross-sensitivity between penicillins and other members of their family, as well as cephalosporins and cephamycins.

EYE

Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN

Skin contact with the material may produce toxic effects; systemic effectsmay result following absorption.

The material is not thought to be a skin irritant (as classified using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Open cuts, abraded or irritated skin should not be exposed to this material.

Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ Inhalation of dusts, generated by the material, during the course of normal handling, may produce toxic effects.

The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

Limited evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure.

CHRONIC HEALTH EFFECTS

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population.

There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of appropriate studies with similar materials using mammalian somatic cells in vivo. Such findings are often supported by positive

results from in vitro mutagenicity studies.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Repeated ingestion of penicillins can cause nausea and/or vomiting, stomach upset, diarrhea, sore or dry throat, and a sore or black hairy tongue. Resistance may develop for some bacteria, and there may be overgrowth of non-susceptible organisms (superinfection).

Exposure to small quantities may induce hypersensitivity reactions characterized by acute bronchospasm, hives (urticaria), deep dermal wheals (angioneurotic edema), running nose (rhinitis) and blurred vision. Anaphylactic shock and skin rash (nonthrombocytopenic purpura) may occur. An individual may be predisposed to such anti-body mediated reaction if other chemical agents have caused prior sensitization (cross-sensitivity).

Penicillinic acid occurs in tautomeric equilibrium with its lactone. The lactone has carcinogenic potential due to alpha,beta-

unsaturation together with an external conjugated double bond attached to the 4-position of the gamma-lactone ring. Local tumours occurred in rats receiving 0.2 mg, twice a week for up to 65 weeks, subcutaneously. Local sarcomas and fibrosarcomas occurred in rats receiving subcutaneous material at 0.1 mg (in oil).

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

Section 4 - FIRST AID MEASURES

SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
- Urgent hospital treatment is likely to be needed.
- If conscious, give water to drink.
- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- NOTE: Wear a protective glove when inducing vomiting by mechanical means.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eyes:
- · Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- · Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin or hair contact occurs:

- Quickly but gently, wipe material off skin with a dry, clean cloth.
- Immediately remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.

Transport to hospital, or doctor.

INHALED

- -
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

Treat symptomatically.

Penicillins are widely distributed in body fluids and tissues. They appear in pleural, pericardial, peritoneal and synovial fluids and diffuse across the placenta into fetal circulation. Only small amounts pass into normal cerebrospinal fluid. Plasma half-life is about 30 minutes with about 55-80% bound to plasma proteins. 20-35% appears in the urine within an hour. Only small concentrations appear in the bile. When cutaneous reactions occur, they may subside spontaneously within a few hours or days following withdrawal of the antibiotic. Administration of antihistamines, or in the absence of a response, corticosteroids, may control reactions. At the first sign of an immediate reaction to penicillin treatment, 0.3 to 1 ml of adrenalin injection should be given intrawenuslarly (or in severe cases, 0.2 ml well diluted intravenously) followed by a further dose should no improvement occur. This may be followed by an antihistamine such as diphenhydramine or chlorpheniramine, given parenterally and a corticosteroid given intravenously. Should bronchospasm be severe, aminophylline (250 mg in 10 ml) may be given intravenously if circulatory failure occurs. Severe urticaria and/or joint pains may be treated with oral corticosteroids. MARTINDALE; The Extra Pharmacopoeia, 29th Edition.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%):	Not available

EXTINGUISHING MEDIA

- •
- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- FIRE FIGHTING
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- · Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

• Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

•

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
 mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
 fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes. FIRE INCOMPATIBILITY

• Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses: Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.
- MAJOR SPILLS
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- · Collect recoverable product into labeled containers for recycling.
- Neutralize/decontaminate residue.
- · Collect solid residues and seal in labeled drums for disposal.
- · Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- · If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- · DO NOT allow material to contact humans, exposed food or food utensils.
- · Avoid contact with incompatible materials.

- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- · Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

Glass container.

- · Lined metal can, Lined metal pail/drum
- · Plastic pail
- Polyliner drum
- · Packing as recommended by manufacturer.
- · Check all containers are clearly labeled and free from leaks.
- For low viscosity materials
- · Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Removable head packaging;
- · Cans with friction closures and
- low pressure tubes and cartridges may be used.

- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages * . - In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *. - * unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic. All inner and sole packagings for substances that have been assigned to Packaging Groups I or II on the basis of inhalation toxicity criteria, must be hermetically sealed.

STORAGE REQUIREMENTS

- •
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- · Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z3)	penicillic acid (Inert or Nuisance Dust: (d) Total dust)		10						*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	penicillic acid (Inert or Nuisance Dust: (d) Respirable fraction)		5						
US OSHA Permissible Exposure Levels (PELs) - Table Z3	penicillic acid (Inert or Nuisance Dust: (d) Total dust)		15						
US - Hawaii Air Contaminant Limits	penicillic acid (Particulates not other wise regulated - Total dust)		10						
US - Hawaii Air Contaminant Limits	penicillic acid (Particulates not other wise regulated - Respirable fraction)		5						

US - Oregon Permissible Exposure Limits (Z3)	penicillic acid (Inert or Nuisance Dust: (d) Respirable fraction)	5	*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	penicillic acid (Particulates not otherwise regulated Respirable fraction)	5	
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	penicillic acid (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5	
US - Michigan Exposure Limits for Air Contaminants	penicillic acid (Particulates not otherwise regulated, Respirable dust)	5	

MATERIAL DATA

PENICILLIC ACID:

■ Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Chemical protective goggles with full seal
- Shielded mask (gas-type)
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy
 document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should
 include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience.
 Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the
 event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should
 be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after
 workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.
- · Head covering.

OTHER

- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- · Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit
- Handle extremely poisonous natural toxins in closed systems such as glove bags or other enclosures, to avoid accidental contact. Workers should wear complete disposable clothing including shoe covers, gloves and mask with an independent air supply.
- •
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered. positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ v PEI	-	Air-line**	

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

For potent pharmacological agents:

Powders

- To prevent contamination and overexposure, no open handling of powder should be allowed.
- · Powder handling operations are to be done in a powders weighing hood, a glove box, or other equivalent ventilated containment system.
- · In situations where these ventilated containment hoods have not been installed, a non-ventilated enclosed containment hood should be used.
- Pending changes resulting from additional air monitoring data, up to 300 mg can be handled outside of an enclosure provided that no grinding, crushing or other dust-generating process occurs.
- An air-purifying respirator should be worn by all personnel in the immediate area in cases where non-ventilated containment is used, where significant amounts of material (e.g., more than 2 grams) are used, or where the material may become airborne (as through grinding, etc.).
- Powder should be put into solution or a closed or covered container after handling.
- If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.

Solutions Handling:

- Solutions can be handled outside a containment system or without local exhaust ventilation during procedures with no potential for aerosolisation. If the procedures have a potential for aerosolisation, an air-purifying respirator is to be worn by all personnel in the immediate area.
- Solutions used for procedures where aerosolisation may occur (e.g., vortexing, pumping) are to be handled within a containment system or with local exhaust ventilation.
- In situations where this is not feasible (may include animal dosing), an air-purifying respirator is to be worn by all personnel in the immediate area. If using a ventilated enclosure that has not been validated, wear a half-mask respirator equipped with HEPA cartridges until the enclosure is validated for use.
- Ensure gloves are protective against solvents in use.

Unless written procedures, specific to the workplace are available, the following is intended as a guide:

- For Laboratory-scale handling of Substances assessed to be toxic by inhalation. Quantities of up to 25 grams may be handled in Class II biological safety cabinets *; Quantities of 25 grams to 1 kilogram may be handled in Class II biological safety cabinets* or equivalent containment systems Quantities exceeding 1 kg may be handled either using specific containment, a hood or Class II biological safety cabinet*,
- HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.
- The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated. Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated. When handling: Quantities of up to 25 grams, an approved respirator with HEPA filters or cartridges should be considered Quantities of 25 grams to 1 kilogram, a half-face negative pressure, full negative pressure, or powered helmet-type air purifying respirator should be considered. Quantities in excess of 1 kilogram, a full face negative pressure, helmet-type air purifying, or supplied air respirator should be considered.

Written procedures, specific to a particular work-place, may replace these recommendations

* For Class II Biological Safety Cabinets, Types B2 or B3 should be considered. Where only Class I, open fronted Cabinets are available, glove panels may be added. Laminar flow cabinets do not provide sufficient protection when handling these

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Mixes with water.			
State	Divided solid	Molecular Weight	170.16
Melting Range (°F)	181.4- 183.2	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not available	pH (1% solution)	Not available
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	>1
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

White crystalline powder; mixes with water (2 g/100 ml).

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- •
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

penicillic acid

TOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.
 TOXICITY
 IRRITATION

Intraperitoneal (rat) LD50: 90 mg/kg

Oral (mouse) LD50: 600 mg/kg

Intraperitoneal (mouse) LD50: 90 mg/kg

Subcutaneous (mouse) LD50: 100 mg/kg

Intravenous (mouse) LD50: 250 mg/kg

■ NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA.

The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Liver changes, effects on fertility, foetotoxicity, foetal death, tumours at sites of applications recorded.

CARCINOGEN

Penicillic acid International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs Group 3

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: PENICILLIC ACID:

DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient penicillic acid Persistence: Water/Soil Persistence: Air LOW

Bioaccumulation LOW

Mobility HIGH

Nil Reported

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction ٠
- Reuse ٠
- Recycling •
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible. Special hazard may exist specialist advicemay be required.
- Consult manufacturer for recycling options. ٠
- Consult Waste Management Authority for disposal.
- Bury or incinerate residue at an approved site.
- Decontaminate empty containers. Observe all label safeguards untilcontainers are cleaned and destroyed. •
- Puncture containers to prevent re-use and bury at an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION					
TOXIC 6					
DOT:					
Symbols:	None	Hazard class or Division:	6.1		

Identification Numbers:	UN3462	PG:	П	
Label Codes:	6.1	Special provisions:	141, IB8, IP2, IP4, T3 TP33	
Packaging: Exceptions:	None	Packaging: Non-bulk:	212	
Packaging: Exceptions:	None	Quantity limitations: Passenger aircraft/rail:	25 kg	
Quantity Limitations: Cargo aircraft only:	100 kg	Vessel stowage: Location:	В	
Vessel stowage: Other:	None			
Hazardous materials description Toxins, extracted from living som Air Transport IATA:	ns and proper shipping names: urces, solid, n.o.s.			
ICAO/IATA Class:	6.1	ICAO/IATA Subrisk:	None	
UN/ID Number:	3462	Packing Group:	II	
Special provisions:	A3			
Shipping Name: TOXINS, EXTRACTED FROM LIVING SOURCES, SOLID, N.O.S. *(CONTAINS PENICILLIC ACID) Maritime Transport IMDG:				
IMDG Class:	6.1	IMDG Subrisk:	None	
UN Number:	3462	Packing Group:	11	

Shipping Name: TOXINS EXTRACTED FROM LIVING SOURCES, SOLID, N.O.S.(contains penicillic acid)

Section 15 - REGULATORY INFORMATION

Special provisions:

210 274

F-A,S-A

500 g

penicillic acid (CAS: 90-65-3) is found on the following regulatory lists; "International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs","US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

EMS Number:

Limited Quantities:

- Cumulative effects may result following exposure*.
- Limited evidence of a carcinogenic effect*.
- Possible respiratory and skin sensitizer*.

Exposure may produce irreversible effects*.
 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: May-7-2009 Print Date:Apr-21-2010