sc-207287

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Amprenavir

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255

(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

A second generation protease inhibitor used to treat HIV infection. Production of amprenavir was discontinued by Glaxo in December 31, 2004; a prodrug version (fosamprenavir) is available

SYNONYMS

C25-H35-N3-O6-S, "(3S)-oxolan-3-yl N-[(2S, 3R)-3-hydroxy-4-[N-2-methylpropyl)(4-", aminobenzene)sulfonamido]-1-phenylbutan-"(3S)-oxolan-3-yl N-[(2S, 3R)-3-hydroxy-4-[N-2-methylpropyl)(4-", aminobenzene)sulfonamido]-1-phenylbutan-2-yl]carbamate. 2-yl]carbamate, "3S)-tetrahydro-3-furyl N-[(1S, 2R)-3-(4-amino-N-", isobutylbenzenesulfonamido)-1-benzyl-2-hydroxypropyl]carbamate, "3S)-tetrahydro-3-furyl N-[(1S, 2R)-3-(4-amino-N-", isobutylbenzenesulfonamido)-1-benzyl-2-hydroxypropyl]carbamate, "[(1S, 2R)-3-[[(4-amino-N-", 1sobutylbenzenesulfonamido)-1-benzyl-2-hydroxypropyl]carbamate, "[(1S, 2R)-3-[[(4-amino-N-", 1sobutylbenzenesulfonamido)-1-benzyl-2-hydroxypropyll-2-hydroxy aminophenyl)sulfonyl](2-methylpropyl)amino]-2-hydroxy-1-", "(phenylmethyl)propyl]carbamic acid (3S)-tetrahydro-3-furanyl ester", "[(1S, 2R)-3-[[(4-aminophenyl)sulfonyl](2-methylpropyl)aminoj-2-hydroxy-1-", "(phenylmethyl)propyl]carbamic acid (3S)-tetrahydro-3-furanyl ester", 3S)-2-hydroxy-4-phenyl-3-((S)-tetrahydrofuran-3-", "4-amino-N-((2syn, "yloxycarbonylamino)-butyl)-N-isobutylbenzene sulfonamide", 3S)-2-hydroxy-4-phenyl-3-((S)-tetrahydrofuran-3-", "yloxycarbonylamino)-butyl)-N-isobutylbenzene "4-amino-N-((2syn, 3R)-4-[(4-aminophenyl)sulfonyl-(2-", methylpropyl)amino]-3-hydroxy-1-phenylbutan-2-yl]carbamate, "3S)-oxolan-3-yl] N-[(2S, "3S)-oxolan-3-yl] N-[(2S, 3R)-4-[(4-aminophenyl)sulfonyl-(2-", methylpropyl)amino]-3-hydroxy-1-phenylbutan-2-yl]carbamate, "Fosamprenavir, a prodrug of amprenavir", "Ritonavir analogue", Agenerase, Prozei, "HIV protease inhibitor", antiviral, peptidomimetic

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

sc-207287

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

EMERGENCY OVERVIEW

Possible risk of harm to the unborn child.

POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- Common side effects of treatment with HIV-I protease inhibitors (PI) include diarrhoea, nausea, vomiting, gastrointestinal discomfort, headache, asthenia, fatigue and taste disturbances. Renal calculi (nephrolithiasis) are seen on occasion. Patients receiving highly active antiretroviral therapy (HAART), generally a combination of reverse transcriptase and protease inhibitors, frequently develop lipodystrophy with elevated levels of serum cortisol, lowered levels of serum DHEA (dehydroepiandrosterone) and increased levels of atherogenic lipids (important in the pathogenesis of arteriosclerosis). In one study researchers have also identified lipid abnormalities associated with coronary heart disease, along with alterations in glucose and insulin metabolism amongst patients undergoing HAART. A substantial percentage (71%) of PI-treated patients had hyperlipidaemia compared with only 24% of PI-naive patients. Amongst PI-treated patients, 44% had isolated hypertriglyceridaemia, 7% had type V hyperlipidaemia, 37% had type IV hyperlipidaemia, 36% type IIb hyperlipidaemia, and 18% had isolated hypercholesterolaemia. Fat redistribution and metabolic abnormalities are commonly seen in patients undergoing PI therapies. Up to 83% of individuals taking Pls develop excess belly fat and skinnier arms, legs and faces. A further study found that subcutaneous fat wasting developed in 54% of PI-treated patients compared with 13% of PI-naive patients. The rate of progression to fat wasting was significantly increased with advancing age and white race; earlier therapy with reverse transcription inhibitors also produced an accelerated effect. Another study, however, questions the subjective analysis of such findings and proposes that fat depletion (lipoatrophy/ lipodystrophy) and redistribution does not occur in HIV-therapy. There is support for the idea that changes in lipid and glucose metabolism, after initiation of PI therapy, are a result of central fat accumulation, per se, as central fat accumulation has been postulated to induce glucose intolerance and hyperlipidaemia in HIV-negative populations. PI-treatment has been associated with a higher rate of diabetes mellitus, impaired glucose tolerance, hyperinsulinaemia and early hypersecretion of proinsulin. A pilot study found that 46% of HIV-infected patients receiving PIs had impaired glucose intolerance, a predictor of future diabetes development. PI-treated patients had a higher and prolonged output of insulin during the [oral glucose tolerance test - OGTT] with delayed peak concentrations in the second phase of the test. In contrast, PI-naive patients responded with rapid insulin release in the first phase of OGTT after glucose ingestion.

EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

- Results in experiments suggest that this material may cause disorders in the development of the embryo or fetus, even when no signs of poisoning show in the mother.
- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Angiolipomas (benign neoplasms of fatty tissue containing a proliferation of, often dilated, blood vessels) may represent a complication of

sc-207287

Material Safety Data Sheet

The Power in Question

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW

protease-inhibitor (PI) therapy. A lipodystrophy syndrome, characterised by peripheral lipoatrophy and central adiposity, as well as hyperlipidaemia and insulin resistance, develops in many HIV-infected patients undergoing PI therapy. Several cases of patients who developed symptomatic angiolipomas after starting PI-therapy have now been reported. Symptomatic appearance of the lesions followed initiation of PIs by many months. The time course is similar to that reported for the appearance of central fat redistribution after beginning protease inhibitors. One study revealed a higher than expected prevalence of premature carotid vessel lesions in a HIV-patient group treated with PIs for at least 12 months. The overwhelming difference between the percentages of acquired lesions reported for healthy individuals (6.7%) and two seropositive groups including PI-naive (14.9%) and PI-experienced (52.7%) patients indicates that HIV-I positive patients have a much higher risk of endothelial damage which becomes remarkable in the case of patients treated with PI-containing regimes for prolonged periods of time. Individuals exhibiting the acquired lesion may be at increased risk of developing arteriosclerosis and vascular dysfunction. A significant number of HIV-infected individuals develop type 2 diabetes within 18 months of undertaking PI therapy. Myocardial infarction has also reportedly been associated with PI therapy (after 24-29 months of treatment). Several cases of disfiguring striae (stretch marks) in HIV-patients using PIs have been described; these occurred within 3-months of the start of therapy. The development of resistance and subsequent loss of drug activity constitutes the primary barrier to long-term efficacious use of HIV-I protease inhibitors. Mutations within the protease gene have been described following use of current inhibitors.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

- •
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- · Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

sc-207287

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

INHALED

- .
- If fumes or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

NOTES TO PHYSICIAN

■ For HIV-proteinase inhibitors: Onset or aggravation of diabetes mellitus may require initiation or dose-adjustments of insulin or oral hypoglycaemic agents. Where diabetic ketoacidosis has occurred, hyperglycaemia may persist even after dicontinuance of PI therapy. Treat symptomatically.

It is not known whether amprenavir can be removed by peritoneal dialysis or hemodialysis. If overdosage occurs, the patient should be monitored for evidence of toxicity and standard supportive treatment applied as necessary.

	Section 5 - FIRE FIGHTING MEASURE
Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not Available
Specific Gravity (water=1):	Not Available
Lower Explosive Limit (%):	Not Available

EXTINGUISHING MEDIA

- •
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- 0---
- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and
 any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a
 particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

sc-207287

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof
 machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.

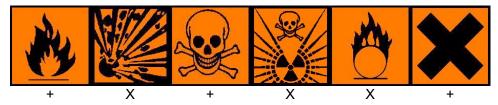
sc-207287

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.


RECOMMENDED STORAGE METHODS

- Glass container.
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- · Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

• amprenavir: CAS:161814-49-9

MATERIAL DATA

AMPRENAVIR:

■ Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION

sc-207287

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Consult your EHS staff for recommendations

EYE

■ When handling very small quantities of the material eye protection may not be required.

For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:

- Chemical goggles
- Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.
- Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- _
- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned
 at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eve wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
 The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may
 be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a

sc-207287

Material Safety Data Sheet

The Power in Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

complete respiratory protection program.

- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

■ Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapors, etc. evaporating from tank (in still air)	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only
0	6 11 . 6 . 1 . 1

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be

sc-207287

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
------------------------	---------	------	----------	-----

adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

State	Divided Solid	Molecular Weight	505.63
Melting Range (°F)	161.6- 165.2	Viscosity	Not Applicable
Boiling Range (°F)	Not Applicable	Solubility in water (g/L)	Partly Miscible
Flash Point (°F)	Not Available	pH (1% solution)	Not Applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not Applicable
Autoignition Temp (°F)	Not Available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	Not Available
Lower Explosive Limit (%)	Not Available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not Applicable

APPEARANCE

White to cream-coloured solid; does not mix well with water (0.04 mg/ml, 25 C). Amprenavir is a single stereoisomer with the (3S)(1S,2R) configuration.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- .
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

amprenavir

TOXICITY AND IRRITATION

■ No significant acute toxicological data identified in literature search.

Carcinogenesis and Mutagenesis: Amprenavir was evaluated for carcinogenic potential by oral gavage administration to mice and rats for up to 104 weeks. Daily doses of 50, 275 to 300, and 500 to 600 mg/kg/day were administered to mice and doses of 50, 190, and 750 mg/kg/day were administered to rats. Results showed an increase in the incidence of benign hepatocellular adenomas and an increase in the combined incidence of hepatocellular adenomas plus carcinoma in males of both species at the highest doses tested. Female mice and rats were not affected. These observations were made at systemic exposures equivalent to approximately 2 times (mice) and 4 times (rats) the human exposure (based on AUC0-24 hr measurement) at the recommended dose of 1,200 mg twice daily. Administration of amprenavir did not cause a statistically significant increase in the incidence of any other benign or malignant neoplasm in mice or rats. It is not known how predictive the results of rodent carcinogenicity studies may be for humans. However, amprenavir was not mutagenic or genotoxic in a battery of in vitro and in vivo assays including bacterial reverse mutation (Ames), mouse lymphoma, rat micronucleus, and chromosome aberrations in human lymphocytes.

Fertility: The effects of amprenavir on fertility and general reproductive performance were investigated in male rats (treated for 28 days before mating at doses producing up to twice the expected clinical exposure based on AUC comparisons) and female rats (treated for 15 days

sc-207287

Material Safety Data Sheet

The Power in Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

before mating through day 17 of gestation at doses producing up to 2 times the expected clinical exposure). Amprenavir did not impair mating or fertility of male or female rats and did not affect the development and maturation of sperm from treated rats. The reproductive performance of the F1 generation born to female rats given amprenavir was not different from control animals.

Pregnancy and Reproduction: Pregnancy Category C. Embryo/foetal development studies were conducted in rats (dosed from 15 days before pairing to day 17 of gestation) and rabbits (dosed from day 8 to day 20 of gestation). In pregnant rabbits, amprenavir administration was associated with abortions and an increased incidence of 3 minor skeletal variations resulting from deficient ossification of the femur, humerus trochlea, and humerus. Systemic exposure at the highest tested dose was approximately one twentieth of the exposure seen at the recommended human dose. In rat foetuses, thymic elongation and incomplete ossification of bones were attributed to amprenavir. Both findings were seen at systemic exposures that were one half of that associated with the recommended human dose.

Pre- and post- natal developmental studies were performed in rats dosed from day 7 of gestation to day 22 of lactation. Reduced body weights (10% to 20%) were observed in the offspring. The systemic exposure associated with this finding was approximately twice the exposure in humans following administration of the recommended human dose. The subsequent development of these offspring, including fertility and reproductive performance, was not affected by the maternal administration of amprenavir.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: AMPRENAVIR:

■ DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

No data for amprenavir (CAS: , 161814-49-9)

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

■ Ingestion may produce health damage*.

sc-207287

HIGH

MODERATE

Material Safety Data Sheet

Hazard Alert Code Key:

LOW

■ Cumulative effects may result following exposure*.

EXTREME

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jan-8-2010 Print Date:May-29-2010

^{* (}limited evidence).