L-Alanine 4-nitroanilide hydrochloride

sc-207788

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

L-Alanine 4-nitroanilide hydrochloride

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C9-H11-N3-O3.HCI

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

Min Max	
IVIIII IVIAX	
Flammability: 1	
Toxicity: 2	
Body Contact: 0 Min/N	
Reactivity: 2 Mode	rate=2
Chronic: 2 High=	

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- The substance and/or its metabolites may bind to hemoglobin inhibiting normal uptake of oxygen.

This condition, known as "methemoglobinemia", is a form of oxygen starvation (anoxia).

FYF

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn).

Slight abrasive damage may also result.

SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models).

Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Most arylamines are powerful poisons to the blood-making system. High chronic doses cause congestion of the spleen and tumor formation.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME CAS RN %
L-alanine-4-nitroanilide hydrochloride 31796-55-1 >98

Section 4 - FIRST AID MEASURES

SWALLOWED

· If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

EYE

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin or hair contact occurs: · Flush skin and hair with running water (and soap if available). · Seek medical attention in event of irritation.

INHALED

· If dust is inhaled, remove from contaminated area. · Encourage patient to blow nose to ensure clear passage of breathing. · If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Symptoms of vasodilation and reflex tachycardia may present following organic nitrate overdose; most organic nitrates are extensively metabolized by hydrolysis to inorganic nitrites. Organic nitrates and nitrites are readily absorbed through the skin, lungs, mucosa and gastro-intestinal tract.

The toxicity of nitrates and nitrites result from their vasodilating properties and their propensity to form methemoglobin.

- · Most produce a peak effect within 30 minutes.
- · Clinical signs of cyanosis appear before other symptoms because of the dark pigmentation of methemoglobin.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG): Negligible
Upper Explosive Limit (%): Not available.

Specific Gravity (water=1): Not available
Lower Explosive Limit (%): Not available

EXTINGUISHING MEDIA

- · Water spray or fog.
- · Foam.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- · Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- · Control personal contact by using protective equipment.
- \cdot Use dry clean up procedures and avoid generating dust.
- · Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- \cdot CAUTION: Advise personnel in area.
- \cdot Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- · Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.
- · Store at -20° C.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes

Canada - Ontario Occupational Exposure Limits	L-alanine- 4-nitroanilide hydrochloride (Particles (Insoluble or Poorly Soluble) Not Otherwise)	10 (I)	
Canada - British Columbia Occupational Exposure Limits	L-alanine- 4-nitroanilide hydrochloride (Particles (Insoluble or Poorly Soluble) Not Otherwise Classified (PNOC))	10 (N)	
Canada - Ontario Occupational Exposure Limits	L-alanine- 4-nitroanilide hydrochloride (Specified (PNOS) / Particules (insolubles ou peu solubles) non précisées par ailleurs)	3 (R)	
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	L-alanine- 4-nitroanilide hydrochloride (Particulates not otherwise regulated Respirable fraction)	5	
US - California Permissible Exposure Limits for Chemical Contaminants	L-alanine- 4-nitroanilide hydrochloride (Particulates not otherwise regulated Respirable fraction)	5	(n)
US - Oregon Permissible Exposure Limits (Z-1)	L-alanine- 4-nitroanilide hydrochloride (Particulates not otherwise regulated (PNOR) (f) Total Dust)	10	Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."
US - Michigan Exposure Limits for Air Contaminants	L-alanine- 4-nitroanilide hydrochloride (Particulates not otherwise regulated, Respirable dust)	5	
US - Oregon Permissible Exposure Limits (Z-1)	L-alanine- 4-nitroanilide hydrochloride (Particulates not - otherwise regulated	5	Bold print identifies substances for which the Oregon Permissible

(PNOR) (f) Respirable Fraction) Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."

L-alanineUS - Wyoming 4-nitroanilide
Toxic and hydrochloride
Hazardous (Particulates not
Substances otherwise
Table Z1 Limits regulated
for Air (PNOR)(f)-

5

Respirable fraction)

L-alanine-4-nitroanilide

Canada - Prince hydrochloride
Edward Island (Particles
Occupational (Insoluble or
Exposure Limits Poorly Soluble)
[NOS] Inhalable

10

See Appendix B current TLV/BEI Book

particles)

ENDOELTABLE

Contaminants

PERSONAL PROTECTION

RESPIRATOR

· particulate.

Consult your EHS staff for recommendations

FYF

- · Safety glasses with side shields
- · Chemical goggles.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- · nitrile rubber
- · butyl rubber
- · fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · Overalls.
- · P.V.C. apron.
- Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

ENGINEERING CONTROLS

- · Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid

Mixes with water.

State	Powder	Molecular Weight	245.70
Melting Range (°F)	Not available	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not available	pH (1% solution)	Not available
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

White powder; mixes with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY

- · Nitroaromatic and in particular polynitroaromatic compounds may present a severe explosion risk if subjected to shock or heated rapidly and uncontrollably as in fire situations.
- · In addition, when such compounds are heated more moderately with caustic alkalies, even when water or organic solvents are present, there is also a risk of violent decomposition or explosion several industrial accidents, which probably were due to such interactions, have occurred; this potential hazard often remains unacknowledged.
- Aromatic nitro compounds range from slight to strong oxidizing agents. If mixed with reducing agents, including hydrides, sulfides and nitrides, they may begin a vigorous reaction that culminates in a detonation. The explosive tendencies of aromatic nitro compounds are increased by the presence of multiple nitro groups.
- · A range of exothermic decomposition energies for nitro compounds is given as 220-410 kJ/mol. The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment. For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g. BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition.
- · Many arylamines (aromatic amines such as aniline, N-ethylaniline, o-toluidine, xylidine etc. and their mixtures) are hypergolic (ignite spontaneously) with red fuming nitric acid. When the amines are dissolved in triethylamine, ignition occurs at -60 deg. C. or less.
- · Various metal oxides and their salts may promote ignition of amine-red fuming nitric acid systems. Soluble materials such as copper(I) oxide, ammonium metavanadate are effective; insoluble materials such as copper(II) oxide, iron(II) oxide, potassium dichromate are also effective.
- · Avoid oxidizing agents, acids, acid chlorides, acid anhydrides.

Avoid reaction with oxidizing agents, bases and strong reducing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

L-alanine-4-nitroanilide hydrochloride

TOXICITY AND IRRITATION

L-ALANINE-4-NITROANILIDE HYDROCHLORIDE:

■ No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

Ingredient L-alanine-4-nitroanilide hydrochloride Persistence: Water/Soil Persistence: Air

Bioaccumulation

Mobility

Section 13 - DISPOSAL CONSIDERATIONS

No Data Available

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

No Data Available

- Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

L-alanine-4-nitroanilide hydrochloride (CAS: 31796-55-1) is found on the following regulatory lists;

"Canada - British Columbia Occupational Exposure Limits", "Canada - Ontario Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits", "Canada National Pollutant Release Inventory (NPRI)", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - Michigan Exposure Limits for Air Contaminants", "US - Oregon Permissible Exposure Limits (Z-1)", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants"

Section 16 - OTHER INFORMATION

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Oct-4-2009 Print Date: Apr-26-2011