
TMB (3,3',5,5'-Tetramethylbenzidine)

Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Sensitive staining reagent for peroxidase and hepatitis B antigen. Non-carcinogenic (Ames test-negative) for benzidine, used as a specific and sensitive reagent for haemoglobin analysis.

SYNONYMS

C16-H20-N2, [-C6H2(CH3)2-4-NH2]2, [-C6H2(CH3)2-4-NH2]2, tetramethyl-benzidine, "3, 5, 3', 5' -tetramethylbenzidine", "3, 5, 3', 5' -tetramethylbenzidine", "(1, 1' -biphenyl)-4, 4-diamine, 3, 3', 5, 5' -tetramethyl-", "(1, 1' -biphenyl)-4, 4-diamine, 3, 5' -tetram

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK

May cause SENSITIZATION by skin contact. Harmful by inhalation, in contact with skin and if swallowed. Irritating to eyes, respiratory system and skin. Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

• The substance and/or its metabolites may bind to hemoglobin inhibiting normal uptake of oxygen. This condition, known as "methemoglobinemia", is a form of oxygen starvation (anoxia).

Symptoms include cyanosis (a bluish discoloration skin and mucous membranes) and breathing difficulties. Symptoms may not be evident until several hours after exposure.

At about 15% concentration of blood methemoglobin there is observable cyanosis of the lips, nose and earlobes. Symptoms may be absent although euphoria, flushed face and headache are commonly experienced. At 25-40%, cyanosis is marked but little disability occurs other than that produced on physical exertion. At 40-60%, symptoms include weakness, dizziness, lightheadedness, increasingly severe headache, ataxia, rapid shallow respiration, drowsiness, nausea, vomiting, confusion, lethargy and stupor. Above 60% symptoms include dyspnea, respiratory depression, tachycardia or bradycardia, and convulsions. Levels exceeding 70% may be fatal.

EYE

This material can cause eye irritation and damage in some persons.

SKIN

Skin contact with the material may be harmful; systemic effects may resultfollowing absorption.

This material can cause inflammation of the skin oncontact in some persons.

The material may accentuate any pre-existing dermatitis condition.

Open cuts, abraded or irritated skin should not be exposed to this material.

• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ Inhalation of dusts, generated by the material, during the course of normalhandling, may be harmful.

• The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

• Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

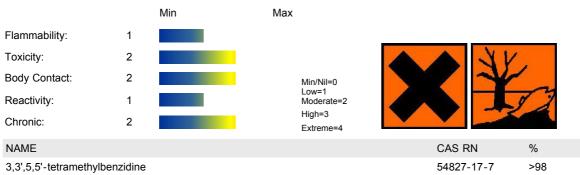
Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Several epidemiological studies of dye users suggest that there may be an excess mortality from bladder cancer in workers exposed to benzidine-based dyes. Inhalation or absorption through the skin has been recognised as a cause for these tumors. The carcinogenicity risk factor for workers exposed to benzidine is estimated to be 14 times higher than that of the unexposed population.

When administered in th diet, benzidine induced urinary bladder carcinomas in dogs and increased the incidence of benign and malignant cholangiomatous tumors and hepatocellular tumors in hamsters of both sexes. When administered by gavage benzidine induced multiple mammary carcinomas in female rats.

A survey of benzidine-exposed workers indicated that those with the lower than normal serum properdin levels were more likely to develop bladder tumours.


NIOSH recommends that three widely used benzidine-derived dyes, Direct Black 38, Direct Blue 6, and Direct Brown 95, be handled in the workplace as if they were human carcinogens. This recommendation is based primarily upon a preliminary analysis of National Cancer Institute (NCI) data from short-term feeding studies, and on early results from NIOSH field studies. Cancerous and precancerous liver conditions were found in rats, similar to the damage produced by known liver carcinogens. Degeneration of liver cells was found in mice. Although the dyes tested by NCI contained less than 4 ppm residual benzidine when fed to the test animals, greater quantities of benzidine were found in the urine of dosed rats and mice. Caution is also indicated by preliminary results from NIOSH field studies showing that humans working with these same dyes also excrete higher than expected levels of benzidine in their urine. Both laboratory and field studies indicate that these benzidine-derived dyes can be metabolized to benzidine which is present in the urine of animals and humans.

Based on the data from the short-term study, NCI scientists believe a cancer causing potential exists upon exposure to the benzidine-derived dyes, most likely through the mechanism of metabolic conversion of the dyes to benzidine in the animal system.

Most arylamines are powerful poisons to the blood-making system. High chronic doses cause congestion of the spleen and tumor formation.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
- Urgent hospital treatment is likely to be needed.
- If conscious, give water to drink.
- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- NOTE: Wear a protective glove when inducing vomiting by mechanical means.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- · Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

- · If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

Treat symptomatically.

The material may induce methemoglobinemia following exposure.

- Initial attention should be directed at oxygen delivery and assisted ventilation if necessary. Hyperbaric oxygen has not demonstrated substantial benefits.
- Hypotension should respond to Trendelenburg's position and intravenous fluids; otherwise dopamine may be needed.
- Symptomatic patients with methemoglobin levels over 30% should receive methylene blue. (Cyanosis, alone, is not an
 indication for treatment). The usual dose is 1-2 mg/kg of a 1% solution (10 mg/ml) IV over 50 minutes; repeat, using the
 same dose, if symptoms of hypoxia fail to subside within 1 hour.

BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant	Index	Sampling Time	Comment
1. Methemoglobin in blood	1.5% of hemoglobin	During or end of shift	B, NS, SQ

B: Background levels occur in specimens collected from subjects NOT exposed

NS: Non-specific determinant; also observed after exposure to other materials

SQ: Semi-quantitative determinant - Interpretation may be ambiguous; should be used as a screening test or confirmatory test.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Not available.
Upper Explosive Limit (%):	Not available
Specific Gravity (water=1):	Not available.
Lower Explosive Limit (%):	Not available

EXTINGUISHING MEDIA

- •____
- Foam.Dry cher
- Dry chemical powder.BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.
- **FIRE FIGHTING**

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- · Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

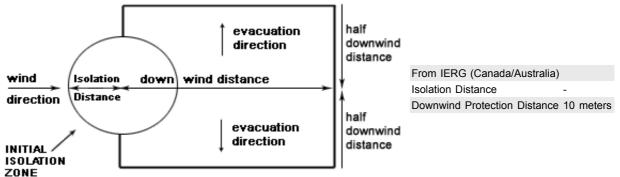
Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS


- Environmental hazard contain spillage.
- · Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- · Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.
- MAJOR SPILLS

Environmental hazard - contain spillage.

- Moderate hazard.
- CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.
- · Control personal contact by wearing protective clothing.
- · Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

PROTECTIVE ACTION ZONE

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action

distance equal to the downwind protective action distance

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose

a supervise of the second secon

6 IERG information is derived from CANUTEC - Transport Canada

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted

that the general population, including susceptible individuals, could

experience notable discomfort, irritation, or certain asymptomatic nonsensory

effects. However, the effects are not disabling and are transient and

reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted

that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects

or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted

that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.


RECOMMENDED STORAGE METHODS

- Glass container
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

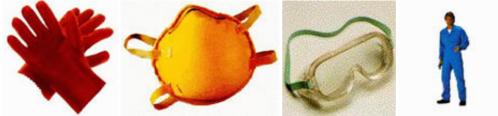
Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source

Material

US - Oregon Permissible Exposure Limits (Z3)	3,3',5,5'-tetramethylbenzidine (Inert or Nuisance Dust: (d) Total dust)	10 *
US OSHA Permissible Exposure Levels (PELs) - Table Z3	3,3',5,5'-tetramethylbenzidine (Inert or Nuisance Dust: (d) Respirable fraction)	5
US OSHA Permissible Exposure Levels (PELs) - Table Z3	3,3',5,5'-tetramethylbenzidine (Inert or Nuisance Dust: (d) Total dust)	15
US - Hawaii Air Contaminant Limits	3,3',5,5'-tetramethylbenzidine (Particulates not other wise regulated - Total dust)	10
US - Hawaii Air Contaminant Limits	3,3',5,5'-tetramethylbenzidine (Particulates not other wise regulated - Respirable fraction)	5
US - Oregon Permissible Exposure Limits (Z3)	3,3',5,5'-tetramethylbenzidine (Inert or Nuisance Dust: (d) Respirable fraction)	5 *
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	3,3',5,5'-tetramethylbenzidine (Particulates not otherwise regulated Respirable fraction)	5
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	3,3',5,5'-tetramethylbenzidine (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5
US - Michigan Exposure Limits for Air Contaminants	3,3',5,5'-tetramethylbenzidine (Particulates not otherwise regulated, Respirable dust)	5


MATERIAL DATA

3,3',5,5'-TETRAMETHYLBENZIDINE:

For benzidines:

The high incidence of bladder tumours amongst workers exposed by inhalation and dermal routes has produced the recommendation that all exposures of benzidine be kept to an absolute minimum in the absence of an assigned TLV.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

• NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.

• Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

polychloroprene

- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

Overalls.

- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- ٠ Eve wash unit.
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

—					
Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator		
10 x PEL	P1	-	PAPR-P1		
	Air-line*	-	-		
50 x PEL	Air-line**	P2	PAPR-P2		
100 x PEL	-	P3	-		
		Air-line*	-		
100+ x PEL	-	Air-line**	PAPR-P3		
* - Negative pressure demand ** - Continuous flow					

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors. Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;

(c): fresh-air hoods or masks

- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at

the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Does not mix with water.			
State	Divided solid	Molecular Weight	240.38
Melting Range (°F)	330.8- 336.2	Viscosity	Not Applicable
Boiling Range (°F)	Not available.	Solubility in water (g/L)	Immiscible
Flash Point (°F)	Not Available	pH (1% solution)	Not applicable.
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available.	Vapour Pressure (mmHG)	Not available.
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	Not available.
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not available.
Volatile Component (%vol)	Not available.	Evaporation Rate	Not Applicable

APPEARANCE

White to light yellow powder; insoluble in water. Light sensitive and moisture sensitive.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- · Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Many arylamines (aromatic amines such as aniline, N-ethylaniline, o-toluidine, xylidine etc. and their mixtures) are hypergolic (ignite spontaneously) with red fuming nitric acid. When the amines are dissolved in triethylamine, ignition occurs at -60 deg. C. or less.
- Various metal oxides and their salts may promote ignition of amine-red fuming nitric acid systems. Soluble materials such as copper(I) oxide, ammonium metavanadate are effective; insoluble materials such as copper(II) oxide, iron(II) oxide, potassium dichromate are also effective.
- · Avoid oxidizing agents, acids, acid chlorides, acid anhydrides.
- Protect from light.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

3,3',5,5'-tetramethylbenzidine

TOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.
 TOXICITY

Intraperitoneal (mouse) LD50: 135 mg/kg

Nil Reported

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

3,3',5,5'-TETRAMETHYLBENZIDINE:

Very toxic to aquatic organisms.

• Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For benzidine:

Environmental Fate

Terrestrial Fate: Koc values in the range of 227,000 to 882,000, measured in 4 soils, indicate that benzidine is expected to be essentially immobile in soil. Benzidine is a weak base with 2 amine functional groups having pKa values of 4.3 and 3.3. These values indicate that benzidine can partially exist in the protonated form under acidic conditions. Volatilisation of the neutral species of benzidine from moist soil surfaces is not expected to be an important fate process given an estimated Henry's Law constant of 5.2x10-11 atm-cu m/mole. The conjugate acid will not volatilise since cations are non-volatile. Benzidine is not expected to volatilise from dry soil surfaces based upon an estimated vapor pressure of 7x10-7 mm Hg, determined from a fragment constant method. Benzidine is generally resistant to biodegradation in soil at high concentrations, but may biodegrade at lower concentrations. Aqueous solutions of benzidine (0.01%) were reported to be stable for 9 weeks to degradation by soil/river water inoculum. In Drummer sity clay loam, benzidine applied at a concentration of 10 ppb was degraded 79% after 4 weeks. Benzidine is rapidly oxidized by Fe(III) and other cations which are frequently found in soils and clay.

Aquatic fate: Koc values of benzidine indicate that benzidine is expected to adsorb to suspended solids and sediment Volatilisation of the free base from water surfaces is not expected based upon an estimated Henry's Law constant. The conjugate acid will not volatilise .BCF values of 40 and 55 measured in fish, suggest bioconcentration in aquatic organisms is moderate. When aerated solutions of benzidine (100 ppb) were exposed to light from a xenon lamp (300-400 nm), complete degradation was observed in 12 hrs. Aqueous solutions of benzidine (0.01%) were reported to be stable for 9 weeks to degradation by soil/river water inoculum.

Atmospheric fate: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and vapour pressure, benzidine, is expected to exist in both the vapour and particulate phases in the ambient atmosphere. Vaporphase benzidine is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 2 hours, calculated from its rate constant of 1.5x10-10 cu cm/molecule-sec at 25 deg C. Benzidine also absorbs light greater than 290 nm and may undergo direct photolysis. Over 40% photodegradation was observed when benzidine adsorbed to silica gel plates was irradiated with UV light > 290 nm for 17 hours. Particulate- phase benzidine may be removed from the air by wet and dry deposition. Ecotoxicity:

Fish LC50 (96 h): scud (Gammarus pseudolimnaeus) >20 mg/l; fathead minnow (Pimephales promelus) >20 mg/l; rainbow trout (Salmo gairdneri) 7.4 mg/l (static bioassay); Salvelinus namaycush 4.35 mg/l (static bioassay); Notropis lutrensis 2.5 mg/l (static bioassay); flagfish (Jordanella floridae) 16.2 mg/l (static bioassay).

Aromatic amines (arylamines), particularly primary aromatic amines, covalently and irreversibly bind to humic substances present in most natural waters.

All metabolites with moieties of: anilines, benzidines and toluidines are of environmental concern. Anilines and benzidines are both acutely toxic and toxic depending on the specific aquatic species (except algae). Toluidines represent a similar concern, It has been speculated that aqueous solutions of aromatic amines can be oxidised by organic radicals, but there are no actual data on reaction rates. Based on a study of reaction rate data for these compounds an estimate of the half-life of aromatic amines in water is approximately 100 days, assuming a peroxy radical concentration of 10-10 mole/L in sunlit, oxygenated water.

DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
3,3',5,5'-tetramethylbenzidine	HIGH		LOW	LOW

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

- A Hierarchy of Controls seems to be common the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:							
Symbols:	G		Hazard class or	Division:	9		
Identification Numbers:	UN3077		PG:		III		
Label Codes:	9		Special provision	ns:		46, 335, B54, IB8 , T1, TP33	3, IP3,
Packaging: Exceptions:	155		Packaging: Non	-bulk:	213		
Packaging: Exceptions:	155		Quantity limitation		No li	imit	
Quantity Limitations: Cargo aircraft only:	No limit		Vessel stowage	: Location:	А		
Vessel stowage: Other:	None						
Hazardous materials descriptio Environmentally hazardous sub Air Transport IATA:							
ICAO/IATA Class:	9		ICAO/IATA Sub	risk:	麶		
UN/ID Number:	3077		Packing Group:		III		
Special provisions:	A97						
Shipping Name: ENVIRO TETRAMETHYLBENZIDINE) Maritime Transport IMD0	NMENTALLY	HAZARDOUS	SUBSTANCE,	SOLID,	N.O.S.	*(CONTAINS	3,3',5,5'-
IMDG Class:	9		IMDG Subrisk:		None	е	
UN Number:	3077		Packing Group:		111		
EMS Number:	F-A,S-F		Special provision	ns:	274	909 944	
Limited Quantities: Shipping Name: ENVIRONME	5 kg NTALLY HAZA	RDOUS SUBSTA	NCE, SOLID, N.O	.S.(contair	ıs 3,3',5,5'	-tetramethylbenz	ridine)

Section 15 - REGULATORY INFORMATION

3,3',5,5'-tetramethylbenzidine (CAS: 54827-17-7) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

Cumulative effects may result following exposure*.

- Limited evidence of a carcinogenic effect*.
 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMČALL.

 Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Mar-25-2009 Print Date:Apr-21-2010