10-(3-Sulfopropyl)acridinium betaine

sc-208824

Material Safety Data Sheet

The Power to Quantion

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

10-(3-Sulfopropyl)acridinium betaine

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C16-H15-N-O3-S, "10-(3-sulfopropyl)acridinium betaine", 3-(10-acridinio)propanesulfonate, "acridinium betaine", "SPA inner salt"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max			
Flammability:	1					
Toxicity:	2					
Body Contact:	2		Min/Nil=0 Low=1	X		
Reactivity:	1		Moderate=2			
Chronic:	0		High=3 Extreme=4			

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Irritating to eyes and skin. Toxic to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident.
- Accidental ingestion of the material may be damaging to the health of the individual.
- Acridines may cause nausea, vomiting, and digestive tract irritation.

EYE

■ This material can cause eye irritation and damage in some persons.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Zwitterionic (amphoteric) surfactants appear to decrease skin barrier function to some extent.

It has been suggested that these surfactants (typically betaines and sulfobetaines) may solubilise stratum corneum lipids.

- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models).

Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified using animal models); nevertheless exposure by all routes should be minimized as a matter of course.

Amphoteric surfactants are easily absorbed in the intestine and are excreted partly unchanged via the faeces. Metabolisation to CO2 and short-chained fatty acids also occur. No tendency to accumulation in the organism or storage of betaines in certain organs has been detected. Betaines generally have a low acute toxicity. E.g., LD50 values for cocoamidopropylbetaine (30% solution) by oral administration have been determined to 4.910 mg/kg body weight in rats.

Betaines do not carry any net charge, and, therefore, they can only form hydrophobic bonds with proteins in the skin. This may be the explanation for the low protein denaturation potential of betaines as the ion-binding of other surfactants contributes to denaturation. In combination with anionic surfactants a positive synergistic effect with regard to skin compatibility is often found. Compared to a 20% solution of C12 alkyl sulfate (AS; sodium lauryl sulfate) alone, decreased erythema was observed for the combination of 20% C12 AS and 10% cocoamidopropyl betaine one hour after the removal of patches. The combination of cocoamidopropyl betaine and C12 AS also reduced swelling of the skin, and generally interactions between amphoterics and AS produce less swelling and result in milder skin reactions. Concentrated betaines are expected to be irritant to skin and eyes. Diluted solutions (3-10%) are not irritant to skin, but they are mildly irritant to the eyes (4.5%)

No evidence of delayed contact hypersensitivity was found in guinea pigs after topically administrated solutions of 10% cocoamidopropyl betaine by using the Magnusson-Kligman maximization test. Various instances of contact allergy to cocoamidopropyl betaine have been reported. In all of the reports it was concluded that the observed skin reactions were due to the presence of 3-dimethylaminopropylamine which is an impurity in cocoamidopropyl betaine. This impurity is an intermediate in the synthesis of alkylamidopropyldimethylamines that are intermediates in the synthesis of the corresponding alkylamido betaines.

Cocoamidopropyl betaine was proven to be non-mutagenic to Salmonella typhimurium in the Ames Salmonella/microsome reverse mutation assay. Short-term genotoxicity tests have shown negative results of mutagenicity for lauryl betaine in various strains of Salmonella typhimurium.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
N-(3-sulfopropyl)acridinium inner salt	83907-41-9	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

· If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

EYE

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If dust is inhaled, remove from contaminated area. · Encourage patient to blow nose to ensure clear passage of breathing. · If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES				
Vapour Pressure (mmHG):	Negligible			
Upper Explosive Limit (%):	Not available.			
Specific Gravity (water=1):	Not available			
Lower Explosive Limit (%):	Not available			

EXTINGUISHING MEDIA

- · Foam.
- · Dry chemical powder.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- · Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- \cdot Control personal contact by using protective equipment.
- · Use dry clean up procedures and avoid generating dust.
- · Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- · CAUTION: Advise personnel in area.
- \cdot Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers.
- · In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- · Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- \cdot Observe manufacturer's storing and handling recommendations.
- · Store at room temperature.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z-3)	N-(3-sulfopropyl)acridinium inner salt (Inert or Nuisance Dust: (d) Total dust)		10						Oregon Permissible Exposure Limits (PELs) are different than the federal limits.
US OSHA Permissible Exposure Levels (PELs) - Table Z3	N-(3-sulfopropyl)acridinium inner salt (Inert or Nuisance Dust: (d) Respirable fraction)		5						
US OSHA Permissible Exposure Levels (PELs) - Table Z3	N-(3-sulfopropyl)acridinium inner salt (Inert or Nuisance Dust: (d) Total dust)		15						
US - Hawaii Air Contaminant Limits	N-(3-sulfopropyl)acridinium inner salt (Particulates not other wise regulated - Total dust)		10						
US - Hawaii Air Contaminant Limits	N-(3-sulfopropyl)acridinium inner salt (Particulates not other wise regulated - Respirable fraction)		5						
US - Oregon Permissible Exposure Limits (Z-3)	N-(3-sulfopropyl)acridinium inner salt (Inert or Nuisance Dust:(d) Respirable fraction)		5						Oregon Permissible Exposure Limits (PELs) are different than the federal limits.
Canada - Ontario Occupational Exposure Limits	N-(3-sulfopropyl)acridinium inner salt (Particles (Insoluble or Poorly Soluble) Not Otherwise)		10 (I)						
Canada - British Columbia Occupational Exposure Limits	N-(3-sulfopropyl)acridinium inner salt (Particles (Insoluble or Poorly Soluble) Not Otherwise Classified (PNOC))		10 (N)						
Canada - Ontario Occupational Exposure Limits	N-(3-sulfopropyl)acridinium inner salt (Specified (PNOS) / Particules (insolubles ou peu solubles) non précisées par ailleurs)		3 (R)						

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	N-(3-sulfopropyl)acridinium inner salt (Particulates not otherwise regulated Respirable fraction)	5	
US - California Permissible Exposure Limits for Chemical Contaminants	N-(3-sulfopropyl)acridinium inner salt (Particulates not otherwise regulated Respirable fraction)	5	(n)
US - Oregon Permissible Exposure Limits (Z-1)	N-(3-sulfopropyl)acridinium inner salt (Particulates not otherwise regulated (PNOR) (f) Total Dust)	- 10	Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."
US - Michigan Exposure Limits for Air Contaminants	N-(3-sulfopropyl)acridinium inner salt (Particulates not otherwise regulated, Respirable dust)	5	
US - Oregon Permissible Exposure Limits (Z-1)	N-(3-sulfopropyl)acridinium inner salt (Particulates not otherwise regulated (PNOR) (f) Respirable Fraction)	- 5	Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	N-(3-sulfopropyl)acridinium inner salt (Particulates not otherwise regulated s (PNOR)(f)- Respirable fraction)	5	
Canada - Prince Edward Island Occupational Exposure Limits ENDOELTABLE	inner salt (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book

PERSONAL PROTECTION

RESPIRATOR

• particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Consult your EHS staff for recommendations

FYF

- · Safety glasses with side shields.
- · Chemical goggles.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- nitrile rubber
- · butyl rubber
- · fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · Overalls.
- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

ENGINEERING CONTROLS

- · Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

State	Divided solid	Molecular Weight	301.37
Melting Range (°F)	536- 554 (decomposes)	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	Not available	pH (1% solution)	Not applicable
Decomposition Temp (°F)	536	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not Applicable

APPEARANCE

Dark yellow powder; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

N-(3-sulfopropyl)acridinium inner salt

TOXICITY AND IRRITATION

N-(3-SULFOPROPYL)ACRIDINIUM INNER SALT:

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- No significant acute toxicological data identified in literature search.

Amphoteric surfactants are easily absorbed in the intestine and are excreted partly unchanged via the faeces. Metabolisation to CO2 and short-chained fatty acids also occur. No tendency to accumulation in the organism or storage of betaines in certain organs has been detected. Betaines generally have a low acute toxicity. E.g., LD50 values for cocoamidopropylbetaine (30% solution) by oral administration have been determined to 4,910 mg/kg body weight in rats.

Betaines do not carry any net charge, and, therefore, they can only form hydrophobic bonds with proteins in the skin. This may be the explanation for the low protein denaturation potential of betaines as the ion-binding of other surfactants contributes to denaturation. In combination with anionic surfactants a positive synergistic effect with regard to skin compatibility is often found. Compared to a 20% solution of C12 alkyl sulfate (AS; sodium lauryl sulfate) alone, decreased erythema was observed for the combination of 20% C12 AS and 10% cocoamidopropyl betaine one hour after the removal of patches. The combination of cocoamidopropyl betaine and C12 AS also reduced swelling of the skin, and generally interactions between amphoterics and AS produce less swelling and result in milder skin reactions. Concentrated betaines are expected to be irritant to skin and eyes. Diluted solutions (3-10%) are not irritant to skin, but they are mildly irritant to the eyes (4.5%)

No evidence of delayed contact hypersensitivity was found in guinea pigs after topically administrated solutions of 10% cocoamidopropyl betaine by using the Magnusson-Kligman maximization test. Various instances of contact allergy to cocoamidopropyl betaine have been reported. In all of the reports it was concluded that the observed skin reactions were due to the presence of 3-dimethylaminopropylamine which is an impurity in cocoamidopropyl betaine. This impurity is an intermediate in the synthesis of alkylamidopropyldimethylamines that are intermediates in the synthesis of the corresponding alkylamido betaines.

Cocoamidopropyl betaine was proven to be non-mutagenic to Salmonella typhimurium in the Ames Salmonella/microsome reverse mutation assay. Short-term genotoxicity tests have shown negative results of mutagenicity for lauryl betaine in various strains of Salmonella typhimurium.

Section 12 - ECOLOGICAL INFORMATION

Toxic to aquatic organisms.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- · Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

Section 15 - REGULATORY INFORMATION

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jun-9-2011 Print Date: Jul-6-2011