Dimethylglyoxime

sc-211355

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Dimethylglyoxime

STATEMENT OF HAZARDOUS NATURE

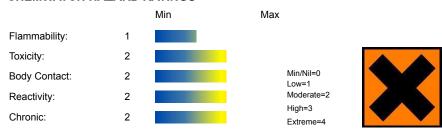
CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA FLAMM BILITY HEALTH AZARD INSTAULITY

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY:


ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C4-H8-N2-O2, CH3-C(NOH)C(NOH)CH3, butanedionedioxime, "butanedione dioxime", butanedioxime, diacetyldioxime, "2, 3-diisonitrobutane", biacetyldioxime, "2, 3 butanedionedioxime", "2, 3 diisonitrosobutane", "glyoxime, dimethyl-"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK

May form explosive peroxides.
Harmful if swallowed.
May cause SENSITISATION by skin contact.
Irritating to eyes, respiratory system and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

FYF

■ This material can cause eye irritation and damage in some persons.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material can cause respiratory irritation in some persons.

The body's response to such irritation can cause further lung damage.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

There are generally two types of oximes: ketoximes derived from ketones and aldoximes derived form aldehydes. Several ketoximes (p-quinone dioxime, acetoxime and methyl ethyl ketoxime) have elicited carcinogenic effects on chronic exposure. Few substantive studies have been performed with aldoximes. The fact that aldoximes can be metabolised to cyanide via a pathway not applicable to ketoximes distinguishes the type of response which might be anticipated. Dehydration of aldoximes to produce nitriles has been shown to be catalysed in vitro by cytochrome P450; dehydration of ketoximes produces amides, rather than nitriles, via a Beckmann rearrangement but this apparently has no analogue in biological systems.

The mechanism and toxicity of oximes to erythrocytes is recognised and might be attributed to hydroxylamine, a product of hydrolysis. Hydroxylamine produces haematologic effects such as methaemoglobinaemia and splenomegaly in mice similar to those observed after exposure to oximes such as butanal oxime. Studies demonstrated the formation of haeme-associated free radicals in erythrocytes exposed to hydroxylamine, leading ultimately to peroxidation of membrane lipids. Lipid peroxidation in cellular membranes may produce several morphological alterations resulting, for example, in membrane aggregation, deformation or breakage. This may result in the release of hydrolytic enzymes which in turn may degrade functional macromolecules and cause secondary damage. In addition membrane-bound enzyme systems may be disrupted. Levels of hydroxylamine produced as a result of hydrolysis are thought to be too low to produce another sign of hydroxylamine toxicity, namely the formation of Heinz bodies

Oximes are not easily oxidised at near neutral conditions and hydrolysis by liver microsomes or S9 is hypothesised (however this conclusion was based on the formation of a ketone rather than hydroxylamine). Another possibility is that oximes are oxidatively metabolised to yield a ketone or aldehyde and some yet to be determined nitrogen-containing species. Cytochrome P450 appears to provide a source of superoxide and hydrogen peroxide which catalyses oxidation in the presence of iron. At least part of the nitrogen in the oxime is converted to nitric oxide which complexes with haeme to give a nitrosylhaemoglobin complex.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
dimethylglyoxime	95-45-4	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

 \cdot IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. \cdot Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

FYF

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN

■ for poisons (where specific treatment regime is absent):
------BASIC TREATMENT

· Establish a patent airway with suction where necessary.

· Watch for signs of respiratory insufficiency and assist ventilation as necessary.

Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES					
Vapour Pressure (mmHG):	Not applicable				
Upper Explosive Limit (%):	Not available.				
Specific Gravity (water=1):	Not available.				
Lower Explosive Limit (%):	Not available.				

EXTINGUISHING MEDIA

- · Foam.
- · Dry chemical powder.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- · Control personal contact by using protective equipment.
- · Use dry clean up procedures and avoid generating dust.
- · Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- · CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- Polyethylene or polypropylene container.
 Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
Canada - Ontario Occupational Exposure Limits	dimethylglyoxime (Particles (Insoluble or Poorly Soluble) Not Otherwise)		10 (I)						
Canada - British Columbia Occupational Exposure Limits	dimethylglyoxime (Particles (Insoluble or Poorly Soluble) Not Otherwise Classified (PNOC))		10 (N)						
Canada - Ontario Occupational Exposure Limits	dimethylglyoxime (Specified (PNOS) / Particules (insolubles ou peu solubles) non précisées par ailleurs)		3 (R)						
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	dimethylglyoxime (Particulates not otherwise regulated Respirable fraction)		5						
US - California Permissible Exposure Limits for Chemical Contaminants	dimethylglyoxime (Particulates not otherwise regulated Respirable fraction)		5						(n)
US - Oregon Permissible Exposure Limits (Z-1)	dimethylglyoxime (Particulates not otherwise regulated (PNOR) (f) Total Dust)	-	10						Bold print identifies substances for which the Oregon Permissible Exposure

Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."

US - Michigan Exposure Limits for Air Contaminants

dimethylglyoxime (Particulates not otherwise regulated, Respirable dust)

5

US - Oregon Permissible Exposure Limits (Z-1)

dimethylglyoxime (Particulates not otherwise regulated (PNOR) (f) Respirable Fraction)

5

5

10

Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise

regulated."

US - Wyoming

Toxic and dimethylglyoxime Hazardous (Particulates not Substances otherwise regulated Table Z1 Limits (PNOR)(f)-

for Air Contaminants Respirable fraction)

Canada dimethylglyoxime Prince Edward (Particles (Insoluble or Poorly Soluble) Island

[NOS] Inhalable Occupational Exposure Limits particles)

ENDOELTABLE

See Appendix B current TLV/BEI Book

PERSONAL PROTECTION

•Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

- · Safety glasses with side shields.
- · Chemical goggles.

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- · butyl rubber
- · fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · Overalls.
- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

ENGINEERING CONTROLS

- · Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- · Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

State	Divided solid	Molecular Weight	116.14
Melting Range (°F)	460- 464	Viscosity	Not Applicable
Boiling Range (°F)	Not available.	Solubility in water (g/L)	Immiscible
Flash Point (°F)	Not Available	pH (1% solution)	Not available.
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available.	Vapour Pressure (mmHG)	Not applicable
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available.
Lower Explosive Limit (%)	Not available.	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	Not applicable	Evaporation Rate	Not applicable

APPEARANCE

White powder or crystals. Soluble in alcohol, ether, pyridine, acetone, practically insoluble in water. Sublimes above 200C.

log Kow -2.16- -0.29

Material Value

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.

STORAGE INCOMPATIBILITY

- · Explosion or violent decomposition during distillation of aldoximes has been attributed to the presence of peroxides arising from autooxidation.
- · Peroxides may form on the -C=NOH system (both aldehydes and hydroxylamine peroxides) or perhaps arise from unreacted aldehyde.
- · Explosion hazards are inherent to ketoximes and many of their derivatives. Such hazard has been attributed to the inadvertent occurrence of acidic conditions leading to the highly exothermic Beckmann rearrangement accompanied by potentially catastrophic gas evolution.
- · The presence of acidic salts (iron(III) chloride), or the ketoxime hydrochloride markedly lowers decomposition temperatures.

· A range of exothermic decomposition energies for oximes is given as 170-230 kJ/mol. The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment. For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g.

BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition.

Avoid storage with reducing agents.

Avoid strong acids.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

dimethylglyoxime

TOXICITY AND IRRITATION

DIMETHYLGLYOXIME:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Oral (rat) LDLo: 250 mg/kg Nil Reported

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type.

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility

dimethylglyoxime HIGH No Data

HIGH MED

Available

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

dimethylglyoxime (CAS: 95-45-4) is found on the following regulatory lists:

"Canada Domestic Substances List (DSL)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- * (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance CAS Suggested codes dimethylglyoxime 95-45-4 R43

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Nov-27-2009 Print Date:Jul-12-2011