lodic acid

sc-211648

Material Safety Data Sheet

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

lodic acid

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

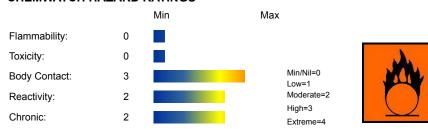
NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch


Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

H-I-O3, "hydrogen iodate"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK

Contact with combustible material may cause fire. Causes burns.

Risk of serious damage to eyes.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- The material has NOT been classified as "harmful by ingestion".

This is because of the lack of corroborating animal or human evidence.

■ Ingestion of acidic corrosives may produce burns around and in the mouth.

the throat and esophagus.

EYE

■ The material can produce chemical burns to the eye following direct contact.

Vapors or mists may be extremely irritating.

- If applied to the eyes, this material causes severe eye damage.
- Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns.

Mild burns of the epithelia generally recover rapidly and completely.

SKIN

- The material can produce chemical burns following direct contactwith the skin.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

■ Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.

INHALED

- If inhaled, this material can irritate the throat andlungs of some persons.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage.

There may be dizziness, headache, nausea and weakness.

CHRONIC HEALTH EFFECTS

■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Exposure to the material may cause concerns for humans owing to possible developmental toxic effects, on the basis that similar materials tested in appropriate animal studies provide some suspicion of developmental toxicity in the absence of signs of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not a secondary non-specific consequence of other toxic effects

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs.

lodine and iodides, may give rise to local allergic reactions such as hives, rupture of skin blood vessels, pain in joints or diseases of the lymph nodes.

lodine and iodides cause goiter and diminished as well as increased activity of the thyroid gland. A toxic syndrome resulting from chronic iodide overdose and from repeated administration of small amounts of iodine is characterized by excessive saliva production, head cold, sneezing, conjunctivitis, headache, fever, laryngitis, inflammation of the bronchi and mouth cavity, inflamed parotid gland, and various skin rashes.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME CAS RN %

iodic acid 7782-68-5 > 99

Section 4 - FIRST AID MEASURES

SWALLOWED

· For advice, contact a Poisons Information Center or a doctor at once. · Urgent hospital treatment is likely to be needed.

FYF

■ If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin or hair contact occurs: · Immediately flush body and clothes with large amounts of water, using safety shower if available. · Quickly remove all contaminated clothing, including footwear.

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested. Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g.

NOTES TO PHYSICIAN

- For acute or short term repeated exposures to strong acids:
- · Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- · Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling.

Depending on the degree of exposure, periodic medical examination is indicated. The symptoms of lung edema often do not manifest until a few hours have passed and they are aggravated by physical effort.

Section 5 - FIRE FIGHTING MEASURES			
Vapour Pressure (mmHG):	Not applicable.		
Upper Explosive Limit (%):	Not applicable		
Specific Gravity (water=1):	4.63		
Lower Explosive Limit (%):	Not applicable		

EXTINGUISHING MEDIA

FOR SMALL FIRE:

- · USE FLOODING QUANTITIES OF WATER.
- · DO NOT use dry chemicals, CO2 or foam.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · May be violently or explosive reactive.

When any large container (including road and rail tankers) is involved in a fire,

consider evacuation by 500 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Will not burn but increases intensity of fire.
- \cdot Heating may cause expansion or decomposition leading to violent rupture of containers.

Decomposition may produce toxic fumes of: hydrogen iodide.

Flammable hydrogen gas may be formed on contact with metals.

If involved in fire, produces oxygen which will support combustion.

FIRE INCOMPATIBILITY

Avoid storage with reducing agents.

· Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous.

VEXTINGUISHING MEDIA

FOR SMALL FIRE:

- · USE FLOODING QUANTITIES OF WATER.
- · DO NOT use dry chemicals, CO2 or foam.

VFIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · May be violently or explosive reactive.

When any large container (including road and rail tankers) is involved in a fire,

consider evacuation by 500 metres in all directions.

ÿGENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Will not burn but increases intensity of fire.
- · Heating may cause expansion or decomposition leading to violent rupture of containers.

Decomposition may produce toxic fumes of: hydrogen iodide.

Flammable hydrogen gas may be formed on contact with metals.

If involved in fire, produces oxygen which will support combustion.

ŸFIRE INCOMPATIBILITY

- ! Avoid storage with reducing agents.
- Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- · Check regularly for spills and leaks.
- · Clean up all spills immediately.
- · No smoking, naked lights, ignition sources.

MAJOR SPILLS

- · Clear area of personnel and move upwind.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid personal contact and inhalation of dust, mist or vapors.
- · Provide adequate ventilation.

RECOMMENDED STORAGE METHODS

- ¦ Glass container.
- · DO NOT repack. Use containers supplied by manufacturer only.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- · Where a can is to be used as an inner package, the can must have a screwed enclosure.

STORAGE REQUIREMENTS

In addition, Goods of Class 5.1, packing group II should be:

- stored in piles so that
- the height of the pile does not exceed 1 metre
- the maximum quantity in a pile or building does not exceed 1000 tonnes unless the area is provided with automatic fire extinguishers
- · the maximum height of a pile does not exceed 3 metres where the room is provided with automatic fire extinguishers or 2 meters if not.
- · the minimum distance between piles is not less than 2 metres where the room is provided with automatic fire extinguishers or 3 meters if not.
- · the minimum distance to walls is not less than 1 metre.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

• iodic acid: CAS:7782-68-5

PERSONAL PROTECTION

RESPIRATOR

· Acid vapour Type B cartridge/ canister. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

EYE

- · Chemical goggles.
- · Full face shield.

HANDS/FEET

Wear chemical protective gloves, eg. PVC.

NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- · Neoprene gloves.
- · DO NOT wear cotton or cotton-backed gloves.
- · DO NOT wear leather gloves.
- · Promptly hose all spills off leather shoes or boots or ensure that such footwear is protected with PVC over-shoes.

OTHER

- · Overalls.
- · PVC Apron.
- · Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- · For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets), non sparking safety footwear.

ENGINEERING CONTROLS

- · Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Mixes with water.

Corrosive.

Acid.

/ tolu.			
State	DIVIDED SOLID	Molecular Weight	175.93
Melting Range (°F)	230 (decomp)	Viscosity	Not Applicable
Boiling Range (°F)	Not available.	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not applicable	pH (1% solution)	Not available
Decomposition Temp (°F)	230	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not applicable	Vapour Pressure (mmHG)	Not applicable.
Upper Explosive Limit (%)	Not applicable	Specific Gravity (water=1)	4.63
Lower Explosive Limit (%)	Not applicable	Relative Vapor Density (air=1)	>1
Volatile Component (%vol)	Not applicable.	Evaporation Rate	Not applicable

APPEARANCE

Odorless crystalline powder; mixes with water (269 gm/100 ml H2O). Soluble in nitric acid and dilute alcohol. Darkens on exposure to air

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable under normal handling conditions.

STORAGE INCOMPATIBILITY

lodic acid (anhydrous hydrogen iodide):

- reacts violently with benzene, calcium hydroxide, wood, acetic acid, carbon, charcoal, olefins, ethanol, sulfur, sulfuric acid, antimony compounds (trivalent), bismuth, fluorine, hydriodic acid, hydrochloric acid, nitrogen trioxide, hypophosphites, rosin and sodium iodide.
- is incompatible with alkalis, unsaturated organics, fluorine, metal carbides, metal acetylides, potassium permanganate and sulfuric acid
- is highly corrosive to most metals and their alloys

Compatibility with plastics should be confirmed prior to use.

Inorganic oxidising agents can react with reducing agents to generate heat and products that may be gaseous (causing pressurization

of closed containers). The products may themselves be capable of further reactions (such as combustion in the air).

- Organic compounds in general have some reducing power and can in principle react with compounds in this class. Actual reactivity varies greatly with the identity of the organic compound.
- Inorganic oxidising agents can react violently with active metals, cyanides, esters, and thiocyanates.
- Inorganic reducing agents react with oxidizing agents to generate heat and products that may be flammable, combustible, or otherwise reactive. Their reactions with oxidizing agents may be violent.
- · Incidents involving interaction of active oxidants and reducing agents, either by design or accident, are usually very energetic and examples of so-called redox reactions.
- · Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous.
- · Inorganic acids are generally soluble in water with the release of hydrogen ions. The resulting solutions have pH's of less than 7.0.
- · Inorganic acids neutralize chemical bases (for example: amines and inorganic hydroxides) to form salts.

Avoid storage with reducing agents.

for oxo halogens:

- · The oxidising power of the group of oxo halogen acids increases directly with oxygen content, though the high stability of the perchlorate ion at ambient temperature must be taken into account.
- · The corresponding 'anhydrides' (halogen oxides) are also powerful oxidants, several being explosively unstable
- · Of the various compounds arising from union of oxygen with one or more halogens (halogen oxides), many are endothermic and all are generally unstable but powerful oxidants.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

iodic acid

TOXICITY AND IRRITATION IODIC ACID:

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Section 12 - ECOLOGICAL INFORMATION

This material and its container must be disposed of as hazardous waste.

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Ignitability characteristic: use EPA hazardous waste number D001 (waste code I)

Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

FOR DISPOSAL OF SMALL QUANTITIES:

- · Cautiously acidify a 3% solution or a suspension of the material to pH 2 with sulfuric acid.
- · Gradually add a 50% excess of aqueous sodium bisulfite with stirring at room temperature. (Other reducers such as thiosulfate or ferrous salts may substitute; do NOT use carbon, sulfur or other strong reducing agents). An increase in temperature indicates reaction is taking place. If no reaction is observed on the addition of about 10% of the sodium bisulfite solution, initiate it by cautiously adding more acid.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols: None Hazard class or Division: 5.1 Identification Numbers: UN3085 PG: II Label Codes: 5.1, 8 Special provisions: 62, IB6,

IP2, T3, TP33

Packaging: Exceptions: None Packaging: Non- bulk: 212 Packaging: Exceptions: None Quantity limitations: 5 kg

Passenger aircraft/rail:

Quantity Limitations: Cargo 25 kg Vessel stowage: Location: B

aircraft only:

Vessel stowage: Other: 13, 34,

56, 58, 106, 138

Hazardous materials descriptions and proper shipping names:

Oxidizing solid, corrosive, n.o.s.

Air Transport IATA:

UN/ID Number: 3085 Packing Group: II

Special provisions: A3

Cargo Only

Packing Instructions: 562 Maximum Qty/Pack: 25 kg Passenger and Cargo Passenger and Cargo Packing Instructions: Y544 Maximum Qty/Pack: 5 kg

Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity

Packing Instructions: 558 Maximum Qty/Pack: 2.5 kg Shipping Name: OXIDIZING SOLID, CORROSIVE, N.O.S.

*(CONTAINS IODIC ACID)

Maritime Transport IMDG:

IMDG Class: 5.1 IMDG Subrisk: 8 UN Number: 3085 Packing Group: II

EMS Number: F-A,S-Q Special provisions: 274

Limited Quantities: 1 kg

Shipping Name: OXIDIZING SOLID, CORROSIVE, N.O.S.(contains iodic acid)

Section 15 - REGULATORY INFORMATION

iodic acid (CAS: 7782-68-5) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- Possible skin sensitiser*.
- May possibly be harmful to the foetus/ embryo*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

■ Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Dec-3-2009 Print Date:Sep-10-2011