Posaconazole

sc-212571

Material Safety Data Sheet

The Proper in Operation

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Posaconazole

STATEMENT OF HAZARDOUS NATURE

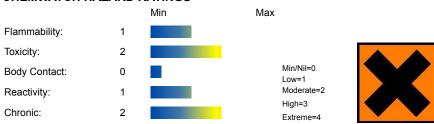
CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY


ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

ACUTE HEALTH EFFECTS

Possible risk of harm to the unborn child.

POTENTIAL HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Aromatase inhibitors (including triazoles and azoles) produce several side effects including mood swing, depression, weight gain, hot flushes, vaginal dryness, bloating, early onset of menopause.

Long-term use may result in bone weakness, increased risk of blood clots, gastrointestinal disturbance, and sweats.

FYF

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn).

Slight abrasive damage may also result.

SKIN

- Skin contact is not thought to produce harmful health effects (as classified using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models).

Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Results in experiments suggest that this material may cause disorders in the development of the embryo or fetus, even when no signs of poisoning show in the mother.

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Azole fungicides show a broad antifungal activity and are used either to prevent fungal infections or to cure an infection. Therefore, they are important tools in integrated agricultural production. According to their chemical structure, azole compounds are classified into triazoles and imidazoles; however, their antifungal activity is due to the same molecular mechanism. The cell membrane assembly of fungi and yeast is disturbed by blocking the synthesis of the essential membrane component ergosterol. This fundamental biochemical mechanism is the basis for the use of azole fungicides in agriculture and in human and veterinary antimycotic therapies. The enzyme involved is sterol 14[alpha]-demethylase, which is found in several phyla. In mammals, it converts lanosterol into the meiosis-activating sterols (MAS) which regulate or modify cell division. These precursors of cholesterol have been discovered to moderate the development of male and female germ (sexual) cells. Several metabolites of lanosterol have been regarded only as precursors of cholesterol without any biological function in animals. This view dramatically changed recently with the observation that FF-MAS isolated from human follicle fluid and T-MAS isolated from bull testis as well as the MAS-412 and MAS-414 induced resumption of meiosis in cultivated mouse oocytes (Byskov et al. 1995).

Aromatase is another target enzyme of azole compounds. In steroidogenesis, it converts androgens into the corresponding oestrogens. The importance of androgens and oestrogens for the development of reproductive organs, for fertility, and in certain sex steroid-dependent diseases is well known. Therefore, azole compounds can be directed against aromatase to treat oestrogen-responsive diseases. Based on the inhibitory activity of azoles on key enzymes involved in sex steroid hormone synthesis, it is likely that effects on fertility, sexual behavior, and reproductive organ development will occur depending on dose level and duration of treatment of laboratory animals. Several azole compounds were shown to inhibit the aromatase and to disturb the balance of androgens and estrogens in vivo. In fact, the clinical use of azole compounds in estrogen-dependent diseases is based on this effect. Additionally, azole antifungals developed to inhibit the sterol 14[alpha]-demethylase of fungi and yeast in agriculture and medicine are also inhibiting aromatase. Therefore, these antifungals may unintentionally disturb the balance of androgens and estrogens. Until now, it is not clear whether this effect is compensated by an increased expression of aromatase or by other unknown mechanisms.

The broad use of biologically active compounds in human therapy as well as in nonhuman applications may involve some risks, as exemplified by emerging antibiotic resistance. In agriculture, fungi and yeast are well known to develop resistance to azoles, and some molecular mechanisms of resistance development have been described. The significance of the agricultural azole resistance for human

clinical antimycotic therapies has been discussed in Europe, but is not clarified yet. The actual target enzyme of azole antifungals, the fungal sterol 14[alpha]-demethylase, is expressed in many species including humans, and it is highly conserved through evolution. Hence, it seems reasonable to assume that most of the azole antifungals used in agriculture and medicine as well as azoles used in management of breast cancer also act as inhibitors on human sterol 14[alpha]-demethylase to an unknown extent. The toxicologic profiles of individual azole fungicides provide evidence for endocrine effects. In fact, many of these fungicides have effects on prostate, testis, uterus, and ovaries as well as on fertility, development, and sexual behavior. The current database does not allow us to establish causal relationships of these effects with inhibition of sterol 14[alpha]-demethylase and/or aromatase, but the overall view strongly suggests a connection with disturbed steroidogenesis

Zam et al; Environmental Health Perspectives - 3/1/2003

Some azoles have been associated with prolongation of the QT interval on the electrocardiogram.

Extensive structural activity data from the family of triazole pesticides suggests that may induce hepatocellular adenomas in animal models. The significance of this finding in human carcinogenicity is equivocal.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

 NAME
 CAS RN
 %

 posaconazole
 171228-49-2
 >98

Section 4 - FIRST AID MEASURES

SWALLOWED

· IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. · Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

EYE

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin or hair contact occurs: · Flush skin and hair with running water (and soap if available). · Seek medical attention in event of irritation.

INHALED

· If dust is inhaled, remove from contaminated area. · Encourage patient to blow nose to ensure clear passage of breathing. · If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

■ for poisons (where specific treatment regime is absent):

----BASIC TREATMENT

Treat symptomatically.

During the clinical trials, some patients received posaconazole up to 1600 mg/day with no adverse events noted that were different from the lower doses. In addition, accidental overdose was noted in one patient who took 1200 mg BID for 3 days. No related adverse events were noted by the investigator.

Posaconazole is not removed by haemodialysis. Posaconazole is highly protein bound (> 98%), predominantly to albumin.

Posaconazole primarily circulates as the parent compound in plasma. Of the circulating metabolites, the majority are glucuronide conjugates formed via UDP glucuronidation (phase 2 enzymes). Posaconazole does not have any major circulating oxidative (CYP450 mediated) metabolites. The excreted metabolites in urine and faeces account for ~17% of the administered radiolabeled dose.

Posaconazole is eliminated with a mean half-life (t½) of 35 hours (range 20 to 66 hours) and a total body clearance (CL/F) of 32 L/hr. Posaconazole is predominantly eliminated in the feces

Section 5 - FIRE FIGHTING MEASURES				
Vapour Pressure (mmHG):	Negligible			
Upper Explosive Limit (%):	Not Available			
Specific Gravity (water=1):	Not Available			
Lower Explosive Limit (%):	Not Available			

EXTINGUISHING MEDIA

- · Foam.
- · Dry chemical powder.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.

When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 100 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- · Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and

[·] Establish a patent airway with suction where necessary.

[·] Watch for signs of respiratory insufficiency and assist ventilation as necessary.

any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen fluoride, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Environmental hazard contain spillage.
- · Clean up waste regularly and abnormal spills immediately.
- · Avoid breathing dust and contact with skin and eyes.
- · Wear protective clothing, gloves, safety glasses and dust respirator.
- · Use dry clean up procedures and avoid generating dust.
- · Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- · Dampen with water to prevent dusting before sweeping.
- · Place in suitable containers for disposal.

MAJOR SPILLS

■ Environmental hazard - contain spillage.

Moderate hazard.

- · CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers.
- · In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- · Polyethylene or polypropylene container.
- \cdot Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

■ Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

• posaconazole: CAS:171228-49-2

PERSONAL PROTECTION

RESPIRATOR

Particulate

Consult your EHS staff for recommendations

EYE

■ When handling very small quantities of the material eye protection may not be required.

For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:

- · Chemical goggles
- · Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59].

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- · Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- · PVC gloves.
- · Protective shoe covers.
- · Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- · nitrile rubber
- · butyl rubber
- · fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- \cdot For quantities up to 500 grams a laboratory coat may be suitable.
- · For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- · For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- · For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- · Eve wash unit.
- \cdot Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit.

ENGINEERING CONTROLS

■ Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

State	Divided Solid	Molecular Weight	700.78
Melting Range (°F)	338- 341.6	Viscosity	Not Applicable
Boiling Range (°F)	Not Applicable	Solubility in water (g/L)	Not Available
Flash Point (°F)	Not Available	pH (1% solution)	Not Applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not Applicable
Autoignition Temp (°F)	Not Available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	Not Available
Lower Explosive Limit (%)	Not Available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not Applicable

APPEARANCE

White solid; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

posaconazole

TOXICITY AND IRRITATION POSACONAZOLE:

■ No significant acute toxicological data identified in literature search.

Carcinogenesis, Mutagenesis, Impairment of Fertility, No drug-related neoplasms were recorded in rats or mice treated with posaconazole for two years at doses below the maximum tolerated dose. In a two-year carcinogenicity study, rats were given posaconazole orally at doses up to 20 mg/kg (females), or 30 mg/kg (males). In the mouse study, mice were treated at oral doses up to 60 mg/kg/day.

Posaconazole was not genotoxic or clastogenic when evaluated in bacterial mutagenicity (Ames), a chromosome aberration study in human peripheral blood lymphocytes, a Chinese hamster ovary cell mutagenicity study, and a mouse bone marrow micronucleus study.

Posaconazole had no effect on fertility of male rats at a dose up to 180 mg/kg.

Posaconazole has been shown to cause skeletal malformations (cranial malformations and missing ribs) in rats when given in doses . 27 mg/kg. The no-effect dose for malformations in rats was 9 mg/kg, No malformations were seen in rabbits at doses up to 80 mg/kg. In the rabbit, the no-effect dose was 20 mg/kg, while high doses of 40 mg/kg and 80 mg/kg caused an increase in resorptions. In rabbits dosed at 80 mg/kg a reduction in body weight gain of females and a reduction in litter size was seen.

Section 12 - ECOLOGICAL INFORMATION

This material and its container must be disposed of as hazardous waste.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- · Reduction
- Reuse
- Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols: G Hazard class or Division: 9 Identification Numbers: UN3077 PG: III Label Codes: 9 Special provisions: 8, 146, 335, B54, IB8, IP3, N20, T1, TP33

Packaging: Exceptions: 155 Packaging: Non- bulk: 213 Packaging: Exceptions: 155 Quantity limitations: No limit

Passenger aircraft/rail:

Quantity Limitations: Cargo No limit Vessel stowage: Location: A

aircraft only:

Vessel stowage: Other: None

Hazardous materials descriptions and proper shipping names:

Environmentally hazardous substance, solid, n.o.s

Air Transport IATA:

ICAO/IATA Class: 9 ICAO/IATA Subrisk: None UN/ID Number: 3077 Packing Group: III

Special provisions: A97

Cargo Only

Packing Instructions: 911 Maximum Qty/Pack: 400 kg Passenger and Cargo Passenger and Cargo Packing Instructions: 911 Maximum Qty/Pack: 400 kg

Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity

Packing Instructions: Y911 Maximum Qty/Pack: 30 kg G

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID,

N.O.S. *(CONTAINS POSACONAZOLE)

Maritime Transport IMDG: IMDG Class: 9 IMDG Subrisk: None UN Number: 3077 Packing Group: III

EMS Number: F-A, S-F Special provisions: 179 274 335 909

Limited Quantities: 5 kg Marine Pollutant: Yes

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

Section 15 - REGULATORY INFORMATION

No data for posaconazole (CAS: , 171228-49-2)

Section 16 - OTHER INFORMATION

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Sep-30-2009 Print Date: Feb-17-2011