Vitamin K1 2,3-Epoxide

Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Occurs in nature. Vitamin K is essential for the formation of prothrombine (factor II) and other clotting factors (factors VII, IX and X) in the liver. Deficiency of Vitamin K produces hypothrombinaemia in which the clotting time of blood is prolonged and spontaneous haemorrhage may occur. Deficiency may result from poor intestinal absorption, from obstructive jaundice or severe liver disease or from the administration of coumarin or indanedione anticoagulants which interfere with Vitamin K metabolism

SYNONYMS

C31-H46-O3, "1a, 7a-dihydro-7a-methyl-1a-(3, 7, 11, 15-tetramethyl-", "2-hexadecenyl)naphth-[2, 3-b]oxirene-2, 7-dione", "2-hexadecenyl)naphth-[2, 3-b]oxirene-2, 7-dione", "Vitamin K1 2, 3-oxide", "Vitamin K1 2, 3-oxide", "2-methyl-3-phytyl-1, 4-naphthoquinone 2, 3-oxide", "2-methyl-3-phytyl-1, 4-naphthoquinone 2, 3-oxide", "natural product"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

None

EMERGENCY OVERVIEW

RISK

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where preexisting organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern. EYE

Although the liquid is not thought to be an irritant, direct contact with the eye may produce transient discomfort characterized by tearing or conjunctival redness (as with windburn).

SKIN

The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

The liquid may be miscible with fats or oils and may degrease the skin, producing a skin reaction described as non-allergic contact dermatitis. The material is unlikely to produce an irritant dermatitis as described in EC Directives .

INHALED

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response

The material has NOT been classified as "harmful by inhalation". This is because of the lack of corroborating animal or human evidence. In the absence of such evidence, care should nevertheless be taken to ensure exposure is kept to a minimum and that suitable control measures be used, in an occupational setting to control vapors, fumes and aerosols.

Inhalation hazard is increased at higher temperatures.

Acute effects from inhalation of high concentrations of vapor may be nose, throat and chest irritation with coughing, sneezing and possible nausea.

CHRONIC HEALTH EFFECTS

Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified using animal models); nevertheless exposure by all routes should be minimized as a matter of course.

Quinones may undergo a reduction reaction giving rise to a semiquinone free radical. Semiquinone metabolites are highly reactive and may interact with biological macromolecules through covalent binding. They can also transfer an electron onto molecular oxygen producing superoxide radical anions, hydrogen peroxide and other reactive oxygen species. During this reaction, the quinone is regenerated and may undergo further enzyme-catalysed one-electron reduction. A reaction cycle is continuously activated - a "redox cycle".

Quinones may be produced from benzene, polycyclic aromatic hydrocarbons, estrogens, and catecholamines and give rise to reactive oxygen species that can damage DNA and other cellular macromolecules and activate signaling pathways. These molecular events may be associated with the initiation, promotion, and progression of carcinogenesis

The capacity of quinone derivatives to produce free radicals is largely influenced by the substituents on the molecule which in turn determine the efficiency of one electron reduction to semiquinone metabolites.

Oxygen activation (generation of a superoxide) occurs during one of the reactions of this metabolic sequence. Superoxide is a strong base and can therefore attract protons from a variety of compounds; it is also a potent reducing agent which can reduce transition metal ions (such as Fe3+ and Cu+) to their reduced form Superoxide may also act as a nucleophile and may readily react with a number of electrophilic agents. Finally superoxide may initiate oxidation reactions, for example, of molecules such as ascorbic acid or epinephrine (adrenaline) following hydrogen abstraction due to its basicity.

Under certain conditions the rate of formation of reactive oxygen species may exceed the capacity of the bodies auto-oxidative defence mechanisms and, as a result, result in "oxidative stress". Oxidative stress appears to be involved in some biological processes such as aging and inflammation reactions and is thought to play a role in the pathogenesis of several diseases, including acute pancreatitis, post-ischaemic syndrome,tumour formation, atherosclerosis and diabetic angiopathy.

Free radicals can react with specific cellular molecules including low molecular weight biomolecules such as neurotransmitters and co-enzymes and, as a consequence, inactivate them. macromolecules and cellular membranes are particularly vulnerable to free radical damage with the resultant loss of physiological function and cell death Depolymerisation of polysaccharides (such as hyaluronic acid) may result in inflammation of the joints.

Free radicals have a high affinity for sulfur containing amino-acids and therefore many proteins. The may bind covalently to these proteins leading to loss, of biological function such as catalysis exhibited by enzymes. Covalent binding may also result in allergic reactions when the modified protein is recognised, by the bodies immune system, as "foreign" Free radicals are also capable of causing proteins to cross-link to yield larger aggregates.

Free radicals are also able to react with the nucleic acids of DNA which may affect cell division or cell death Oxidative modifications of DNA may result in tumour initiation.

Lipids containing several double bonds (such as polyunsaturated fatty acids and cholesterol) are also subject to damage. In the case of membrane phospholipids, such "peroxidation" results in impairment of cellular and/ or subcellular membranes which may produce cell death. Transition metal ions may also play an important role in lipid peroxidation after free radical-induced change of valency. Fe3+/Fe2+, copper and mercury ions, as well as vanadate and chromate ions seem to initiate this process and may even exacerbate it by producing secondary radicals when the phospholipid is modified.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

Section 4 - FIRST AID MEASURES

SWALLOWED

- · Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE

- If this product comes in contact with eyes:
- · Wash out immediately with water.
- · If irritation continues, seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Other measures are usually unnecessary.

NOTES TO PHYSICIAN

Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	<1
Lower Explosive Limit (%):	Not available.

EXTINGUISHING MEDIA

- ٠
- Foam.
- Dry chemical powder. • BCF (where regulations permit).
- · Carbon dioxide.
- · Water spray or fog Large fires only. **FIRE FIGHTING**
- · Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- · Avoid spraying water onto liquid pools.
- · Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

Combustible.

- Slight fire hazard when exposed to heat or flame.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Mists containing combustible materials may be explosive.

Combustion products include: carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

May emit corrosive fumes FIRE INCOMPATIBILITY

Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result

PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: Respirator: Type A Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- Avoid breathing vapors and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.

- Wipe up.
- · Place in a suitable labeled container for waste disposal.
- MAJOR SPILLS
- Moderate hazard.
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- · Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources. Increase ventilation.
- Stop leak if safe to do so.
- · Contain spill with sand, earth or vermiculite.
- · Collect recoverable product into labeled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- · If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- •
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- · Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- · Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- · Work clothes should be laundered separately.
- Use good occupational work practice.
- · Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

RECOMMENDED STORAGE METHODS

- Metal can or drum
- Packing as recommended by manufacturer.
- · Check all containers are clearly labeled and free from leaks.
- STORAGE REQUIREMENTS
- Otoro in animinal and i
- Store in original containers.Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
Canada - Alberta Occupational Exposure Limits	Vitamin K1 Oxide (Turpentine and selected monoterpenes)	20	111						

MATERIAL DATA

VITAMIN K1 OXIDE:

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA. OSHA (USA) concluded that exposure to sensory irritants can:

- · cause inflammation
- cause increased susceptibility to other irritants and infectious agents •
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.
- Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.
- Polyethylene gloves
- Wear chemical protective gloves, eg. PVC.

Wear safety footwear or safety gumboots, eg. Rubber.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- · Eye wash unit.

RESPIRATOR

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

(volume)	WAAIHUHI FIOLECIIOH I ACIOI	nan-lace nespirator	I UII-I ace Nespirator
1000	10	A-1	-
1000	50	-	A-1
5000	50	Airline*	-
5000	100	-	A-2
10000	100	-	A-3
	100+		Airline* *

* - Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

■ General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear an approved respirator An approved respirator (supplied air type) may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapors, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid. Does not mix with water. Floats on water.			
State	Liquid	Molecular Weight	466.68
Melting Range (°F)	Not available	Viscosity	Not Applicable
Boiling Range (°F)	Not applicable.	Solubility in water (g/L)	Immiscible
Flash Point (°F)	Not available	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available.	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	<1
Lower Explosive Limit (%)	Not available.	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not Applicable

APPEARANCE

Colourless oil; does not mix with water. Soluble in fat solvents.

CONDITIONS CONTRIBUTING TO INSTABILITY

- - Presence of incompatible materials.
- Product is considered stable.
- . Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Protect from light.

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

Vitamin K1 Oxide

TOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

Biologically active naphthoquinones readily pass through the cellular membranes where their electrophilicity enables them to conjugate with other compounds. This reaction has been implicated in the toxicity of quinones. Nucleophilic targets include thiol groups which results in inhibition of enzymes such as parvulin-like peptidyl-prolyl cis/trans isomerases, glutathione-Stransferase and cardiac sarcoplasmic reticulum Ca2+ ATPase

The toxicity of quinone compounds has been extensively studied and is generally accepted to be a function of (a) the capacity of quinones to produce oxygen free radicals and (b) the electrophilicity of quinones, which enables them to form adducts to cellular macromolecules. In vitro experiments designed to examine the relative rates of enzymatic single-electron reduction demonstrated that naphthoquinones, especially juglone, undergo rapid single-electron reduction.

Unsubstituted naphthoquinones generally do not show mutagenicity in the Salmonella mutation assay in the presence or absence of S-9 metabolic activation. However, substituted naphthoquinones containing one or more hydroxyl groups

and/or methoxyl groups have been shown to be mutagenic in S. typhimurium in the presence of S-9. No significant acute toxicological data identified in literature search.

Intravenous administration of phytomenadione (Vitamin K1) has caused reactions, including altered sensations of taste, flushing of the face, sweating, bronchospasm, tachycardia and hypotension. It has been sugested that the vehicle carrying the Vitamin may be responsible

CARCINOGEN

Vitamin K International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Group 3 substances Monographs

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: VITAMIN K1 OXIDE

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

- A Hierarchy of Controls seems to be common the user should investigate:
- Reduction,
- Reuse ٠
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

Vitamin K1 Oxide (CAS: 25486-55-9) is found on the following regulatory lists; "Canada - Alberta Occupational Exposure Limits", "Canada National Pollutant Release Inventory (NPRI)"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

May produce discomfort of the respiratory system*.
* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

 Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Nov-5-2009 Print Date:Apr-21-2010