# 3,3'-Dioctadecyloxacarbocyanine perchlorate

sc-214168

**Material Safety Data Sheet** 



The Power to Oscotion

Hazard Alert Code Key:

**EXTREME** 

HIGH

MODERATE

LOW

### Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

### **PRODUCT NAME**

3,3'-Dioctadecyloxacarbocyanine perchlorate

### STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

### **NFPA**



### **SUPPLIER**

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

#### **EMERGENCY**

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

### **SYNONYMS**

C53-H85-CI-N2-O6

### **Section 2 - HAZARDS IDENTIFICATION**

### **CHEMWATCH HAZARD RATINGS**

Min Max

Flammability: 1

Toxicity: 2

Body Contact: 2

Reactivity: 2

Chronic: 2

Min/Nil=0

Low=1

Moderate=2

High=3

Extreme=4



#### **CANADIAN WHMIS SYMBOLS**







## **EMERGENCY OVERVIEW**

#### **RISK**

Irritating to eyes, respiratory system and skin.

### POTENTIAL HEALTH EFFECTS

#### **ACUTE HEALTH EFFECTS**

### **SWALLOWED**

- Accidental ingestion of the material may be damaging to the health of the individual.
- Symptoms of exposure to perchlorates include shortness of breath, difficulty breathing and a bluish discoloration of the skin.

The effects may be delayed for several hours following exposure.

■ Nausea and vomiting are almost always apparent after chlorate poisonings usually with upper stomach pain. Diarrhea may also occur.

#### **EYE**

■ This material can cause eye irritation and damage in some persons.

#### SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

#### **INHALED**

■ The material can cause respiratory irritation in some persons.

The body's response to such irritation can cause further lung damage.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

#### **CHRONIC HEALTH EFFECTS**

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Exposure to the material may cause concerns for humans owing to possible developmental toxic effects, on the basis that similar materials tested in appropriate animal studies provide some suspicion of developmental toxicity in the absence of signs of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not a secondary non-specific consequence of other toxic effects.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Chronic and/or sub-lethal exposure to inorganic chlorate may have deleterious effects on human health, such as redness of the eyes and skin (including dermatitis), sore throat, abdominal pain, blue lips or skin, diarrhea, nausea, vomiting, shortness of breath, and unconsciousness. Sodium chlorate may damage the liver, kidneys, and blood cells of humans.

Subchronic chlorate exposure was associated with smaller body and organ weights, blood abnormalities and pituitary and thyroid abnormalities in one study using Sprague-Dawley rats.

Chlorate is a thyroid toxicant producing thyroid gland follicular cell hypertrophy in rats and mice following chronic exposures, and may produce follicular cell tumors in rats. The lack of mutagenicity indicates that the thyroid tumors are induced by a non-mutagenic mechanism and are therefore not likely to be carcinogenic. The effects may be attributed to changes in levels of thyroid hormones seen after administration of high doses of sodium chlorate. In female mice there was equivocal and marginal evidence of increased pancreatic islet carcinoma. Sodium chlorate was negative in most bacterial gene mutation assays and in several cytogenetics tests, including a hypoxanthineguanine phosphoribosyl-transferase (HGPRT) assay in Chinese hamster ovaries and a micronucleus assay.

Intramuscular administration of potassium chlorate to pregnant rats resulted in a prolonged gestation period in most cases, and reduced neonatal weight relative to the controls. According to the author, newborn rats also showed a "marked" increase of haematopoietic residue and lipid deposit over controls, and occasionally, exposure resulted in the appearance of hyaline droplets and casts in newborn kidneys. The number of animals per treatment group/number affected, duration of exposure, and information on dose levels was not available.

African green monkeys (five males and seven females) were used to study the thyroid effects of sodium chlorate when administered for 30-60 days as chlorate at concentrations of 4, 7.5, 15, 30 or 58.4 mg/kg bw per day. Chlorate did not induce thyroid depression. Chlorate did not induce a dose-dependent oxidative stress, as was observed in the case of chlorite.

Female rats were exposed to 1 or 10 mg chlorate/L in their drinking water for ten weeks. Fetuses were taken on the 20th day of gestation and examined for external, visceral and skeletal malformations. No significant adverse findings were reported.

No chromosomal abnormalities were seen in either the micronucleus test or a cytogenetic assay in mouse bone marrow cells following gavage dosing with chlorate.

Perchlorates may affect the use of iodine by the thyroid gland and chronic exposures may result in symptoms of thyroid dysfunction such as goiter.

Some carbocyanines are cytotoxic.

#### Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME CAS RN %
3,3'-dioctadecyloxacarbocyanine perchlorate 34215-57-1 >98

### **Section 4 - FIRST AID MEASURES**

#### **SWALLOWED**

· If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

#### **FYF**

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

#### SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

#### **INHALED**

· If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested.

#### **NOTES TO PHYSICIAN**

■ Antithyroid effects produced by the perchlorates may be reversed with iodine. Patients should be warned to report the development of sore throat, fever or rashes since the are indicative of blood abnormalities.

For chlorates:

For severe intoxication: Empty the stomach by lavage and aspiration or by emesis, give demulcents or sweetened drinks and maintain respiration. Pethidine may be given if required. A 1% solution of sodium thiosulfate may be used for lavage and may also be given by intravenous infusion. Haemodialysis, peritoneal dialysis or exchange perfusions may be of value in removing chlorate from the blood. Forced diuresis should not be attempted if there is inadequate urine input.

MARTINDALE: The Extra Pharmacopoeia, 27th Edition

The high sensitivity of glucose-6-phosphate dehydrogenase to denaturation by chlorate explains the inefficacy of methylene blue to reduce methaemoglobin formed, as the antidotal effect of methylene blue depends on NADPH formed mainly by the oxidation of glucose-6-phosphate. The observed changes occur only in the presence of methaemoglobin which forms a destabilising complex with chlorate. Methaemoglobin thus autocatalytically increases methaemoglobin formation and destruction of the erythrocyte.

| Section 5 - FIRE FIGHTING MEASURES |                |  |  |  |  |  |
|------------------------------------|----------------|--|--|--|--|--|
| Vapour Pressure (mmHG):            | Negligible     |  |  |  |  |  |
| Upper Explosive Limit (%):         | Not available  |  |  |  |  |  |
| Specific Gravity (water=1):        | Not available. |  |  |  |  |  |
| Lower Explosive Limit (%):         | Not available  |  |  |  |  |  |

### **EXTINGUISHING MEDIA**

- FOR SMALL FIRE:
- · USE FLOODING QUANTITIES OF WATER.
- · DO NOT use dry chemicals, CO2 or foam.

### **FIRE FIGHTING**

- · Alert Emergency Responders and tell them location and nature of hazard.
- · May be violently or explosively reactive.

When any large container (including road and rail tankers) is involved in a fire,

consider evacuation by 800 metres in all directions.

### GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- $\cdot$  Combustible solid which burns but propagates flame with difficulty.
- · Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

### FIRE INCOMPATIBILITY

- Avoid storage with reducing agents.
- · Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous.

#### PERSONAL PROTECTION

Glasses:

Full face- shield.

Gloves:

Respirator:

Particulate dust filter.

# Section 6 - ACCIDENTAL RELEASE MEASURES

### MINOR SPILLS

- · Clean up all spills immediately.
- · No smoking, naked lights, ignition sources.

# MAJOR SPILLS

- · Clear area of personnel and move upwind.
- · Alert Emergency Responders and tell them location and nature of hazard.

### **Section 7 - HANDLING AND STORAGE**

### PROCEDURE FOR HANDLING

- · Avoid personal contact and inhalation of dust, mist or vapors.
- · Provide adequate ventilation.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

### RECOMMENDED STORAGE METHODS

- Glass container.
- · DO NOT repack. Use containers supplied by manufacturer only.

For low viscosity materials

- · Drums and jerricans must be of the non-removable head type.
- · Where a can is to be used as an inner package, the can must have a screwed enclosure.

#### STORAGE REQUIREMENTS

- · In addition, Goods of Class 5.1, packing group III should be stored in packages and be separated from buildings, tanks, and compounds containing other dangerous goods in tanks, and from property boundaries by a distance of at least 5 metres.
- · Store at 4° C.

### Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

#### **EXPOSURE CONTROLS**

| Source                                                                                      | Material                                                                                                                                        | TWA<br>ppm | TWA<br>mg/m³ | STEL<br>ppm | STEL<br>mg/m³ | Peak<br>ppm | Peak<br>mg/m³ | TWA<br>F/CC | Notes                                                                                                           |
|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------------|---------------|-------------|---------------|-------------|-----------------------------------------------------------------------------------------------------------------|
| Canada -<br>Ontario<br>Occupational<br>Exposure<br>Limits                                   | 3,3'-dioctadecyloxacarbocyanine perchlorate (Particles (Insoluble or Poorly Soluble) Not Otherwise)                                             |            | 10 (I)       |             |               |             |               |             |                                                                                                                 |
| Canada -<br>British<br>Columbia<br>Occupational<br>Exposure<br>Limits                       | 3,3'-dioctadecyloxacarbocyanine<br>perchlorate (Particles (Insoluble or<br>Poorly Soluble) Not Otherwise<br>Classified (PNOC))                  |            | 10 (N)       |             |               |             |               |             |                                                                                                                 |
| Canada -<br>Ontario<br>Occupational<br>Exposure<br>Limits                                   | 3,3'-dioctadecyloxacarbocyanine<br>perchlorate (Specified (PNOS) /<br>Particules (insolubles ou peu<br>solubles) non précisées par<br>ailleurs) |            | 3 (R)        |             |               |             |               |             |                                                                                                                 |
| US -<br>Tennessee<br>Occupational<br>Exposure<br>Limits - Limits<br>For Air<br>Contaminants | 3,3'-dioctadecyloxacarbocyanine<br>perchlorate (Particulates not<br>otherwise regulated Respirable<br>fraction)                                 |            | 5            |             |               |             |               |             |                                                                                                                 |
| US - California<br>Permissible<br>Exposure<br>Limits for<br>Chemical<br>Contaminants        | 3,3'-dioctadecyloxacarbocyanine<br>perchlorate (Particulates not<br>otherwise regulated Respirable<br>fraction)                                 |            | 5            |             |               |             |               |             | (n)                                                                                                             |
| US - Oregon<br>Permissible<br>Exposure<br>Limits (Z-1)                                      | 3,3'-dioctadecyloxacarbocyanine<br>perchlorate (Particulates not<br>otherwise regulated (PNOR) (f)<br>Total Dust)                               | -          | 10           |             |               |             |               |             | Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the |

federal Limits. **PNOR** means "particles not otherwise regulated."

US - Michigan 3,3'-dioctadecyloxacarbocyanine perchlorate (Particulates not Exposure Limits for Air otherwise regulated, Respirable Contaminants

Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the

US - Oregon 3,3'-dioctadecyloxacarbocyanine Permissible perchlorate (Particulates not Exposure otherwise regulated (PNOR) (f)

Limits (Z-1) Respirable Fraction) federal Limits. **PNOR** means "particles not otherwise regulated."

US - Wyoming

Toxic and Hazardous Substances Table Z1 Limits for Air

3,3'-dioctadecyloxacarbocyanine perchlorate (Particulates not otherwise regulated (PNOR)(f)-Respirable fraction)

5

5

5

Contaminants Canada -

Prince Edward 3,3'-dioctadecyloxacarbocyanine Island perchlorate (Particles (Insoluble or Occupational Poorly Soluble) [NOS] Inhalable Exposure

particles)

Limits

10

See Appendix B current TLV/BEI Book

**ENDOELTABLE** 

### PERSONAL PROTECTION









### **RESPIRATOR**

· Particulate dust filter.

Consult your EHS staff for recommendations

#### **EYE**

- · Chemical goggles.
- · Full face shield.

## HANDS/FEET

■ Wear chemical protective gloves, eg. PVC.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

· When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than

240 minutes according to EN 374) is recommended.

- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- · DO NOT wear cotton or cotton-backed gloves.
- · DO NOT wear leather gloves.
- Promptly hose all spills off leather shoes or boots or ensure that such footwear is protected with PVC over-shoes.

#### OTHER

- · Overalls.
- · PVC Apron.
- · Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- $\cdot$  For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets), non sparking safety footwear.

#### **ENGINEERING CONTROLS**

- · Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

### Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

#### **PHYSICAL PROPERTIES**

Does not mix with water.

| State                     | DIVIDED SOLID | Molecular Weight               | 881.72          |
|---------------------------|---------------|--------------------------------|-----------------|
| Melting Range (°F)        | Not available | Viscosity                      | Not Applicable  |
| Boiling Range (°F)        | Not available | Solubility in water (g/L)      | Partly miscible |
| Flash Point (°F)          | Not available | pH (1% solution)               | Not available.  |
| Decomposition Temp (°F)   | Not Available | pH (as supplied)               | Not applicable  |
| Autoignition Temp (°F)    | Not available | Vapour Pressure (mmHG)         | Negligible      |
| Upper Explosive Limit (%) | Not available | Specific Gravity (water=1)     | Not available.  |
| Lower Explosive Limit (%) | Not available | Relative Vapor Density (air=1) | Not applicable  |
| Volatile Component (%vol) | Negligible    | Evaporation Rate               | Not applicable  |

#### **APPEARANCE**

Powder; does not mix with water. Soluble in chloroform.

### **Section 10 - CHEMICAL STABILITY**

# **CONDITIONS CONTRIBUTING TO INSTABILITY**

- · Presence of incompatible materials.
- · Product is considered stable under normal handling conditions.

#### STORAGE INCOMPATIBILITY

■ NOTE: May contain traces of perchloric acid or may, on contact with acids, produce an anhydrous perchloric acid an extremely reactive and explosive species. Many of the reported explosions involving perchlorate may result its ability to form unstable perchlorate esters or salts of the anhydrous acid.

#### WARNING:

- · On the basis of experience with cobalt(III) perchlorate, attention is drawn to the possibility of stable metal perchlorates being converted by unintentional dehydration to unstable (endothermic) lower hydrates capable of explosive decomposition in the absence of impurities. Great care must be taken to avoid dehydration or desolvation of perchlorates.
- · Metal perchlorates may be explosively reactive with finely divided aluminium, magnesium and zinc and other metals, calcium and strontium hydrides, glycol (on heating), sulfuric acid (with the formation of unstable perchloric acid), and trifluoromethanesulfonic acid.
- The perchlorate salts of the complexes of divalent cobalt, nickel and particularly iron ([tetramethyl[14]-N8 complexes) are potentially explosive and storage for more than 4 weeks is inadvisable.
- · Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous.
- · Segregate chlorates from organic matter, acids, poisonous gases, flammables, corrosives, aluminium and ammonium salts and any other combustible material.
- · Mixtures of chlorates with fibrous and absorbent organic materials such as wood, paper, leather, flour, sawdust, sugar, shellac, may be ignited or caused to explode by static sparks, friction or shock.
- · The extreme hazardous nature of mixtures of metal chlorates with phosphorus or sulfur, apart from being powerful explosives, are dangerously sensitive to friction or shock; spontaneous ignition occasionally occurs.
- Mixtures with sucrose, lactose, chromium, sulfur dioxide, sodium amide, zirconium, germanium and titanium explode on heating.
- · Forms incompatible sometimes explosive mixtures with thorium dicarbide, strontium hydride, hydrogen iodide, fluorine, cyanoguanidine, cyanides, dinickel trioxide, powdered carbon, aqua regia and ruthenium, nitric acid, manganese dioxide and potassium hydroxide or boron.
- · Chlorates should not be allowed to come into contact with ammonium salts, aluminium and other powdered metals, phosphorous, silicon,

sulfur, sulfides, sulfuric acid, nitrobenzene, iodides and tartaric acid

- · Mixtures with hydrocarbons, metal phosphides (Zn, Ag, Al, Cu, Hg, Mg, etc), metal thiocyanates, metal sulfides, arsenic, carbon, phosphorous, sulfur, ammonium salts, powdered metals, arsenic trioxide, phosphorous, silicon, sulfur, sulfides, sulfites and hyposulfites are easily ignited (by friction impact or heat) and are potentially explosive.
- · Metal chlorates in contact with strong acids liberate explosive chlorine dioxide gas. With concentrated sulfuric acid a violent explosion can occur unless effective cooling is used. Mixing potassium chlorate and concentrated sulfuric acid results in an explosion with optimum temperature range being 120-130. Heating a moist mixture of metal chlorate and a dibasic organic acid (tartaric or citric acid) liberates chlorine dioxide diluted with carbon dioxide.
- · Fusion of chlorates with metal cyanides may lead to an explosion.
- · Chlorates containing 1-2% bromate or sulfur are liable to spontaneous explosion.
- · Chlorates releases oxygen, chlorine and chlorine dioxide when heated above 300 deg. C..
- · In presence of moisture may release oxygen and ozone.
- · Intimate mixtures of chlorates, bromates or iodates of barium, cadmium, calcium, magnesium, potassium, sodium or zinc, with finely divided aluminium, arsenic, copper, carbon, phosphorus, sulfur, hydrides of alkali- and alkaline earth-metals; sulfides of antimony, arsenic, copper or tin; metal cyanides, thiocyanates; or impure manganese dioxide may react explosively or violently, either spontaneously (especially in the presence of moisture) or on initiation by heat, impact or friction, sparks or addition of sulfuric acid.

BRETHERICKS HANDBOOK OF REACTIVE CHEMICAL HAZARDS, 4th Edition.

· Inorganic reducing agents react with oxidizing agents to generate heat and products that may be flammable, combustible, or otherwise reactive. Their reactions with oxidizing agents may be violent.

Avoid storage with reducing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

### Section 11 - TOXICOLOGICAL INFORMATION

3,3'-dioctadecyloxacarbocyanine perchlorate

#### **TOXICITY AND IRRITATION**

#### 3,3'-DIOCTADECYLOXACARBOCYANINE PERCHLORATE:

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

No significant acute toxicological data identified in literature search.

### **Section 12 - ECOLOGICAL INFORMATION**

This material and its container must be disposed of as hazardous waste.

**Ecotoxicity** 

Ingredient Persistence: Persistence: Air Bioaccumulation Mobility

Water/Soil Persistence: Air Bioaccumulation Mobility

3,3'-dioctadecyloxacarbocyanine perchlorate No Data Available No Data Available

### **Section 13 - DISPOSAL CONSIDERATIONS**

### **US EPA Waste Number & Descriptions**

A. General Product Information

Ignitability characteristic: use EPA hazardous waste number D001 (waste code I)

### **Disposal Instructions**

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- · Reuse
- · Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

FOR DISPOSAL OF SMALL QUANTITIES:

 $\cdot$  Cautiously acidify a 3% solution or a suspension of the material to pH 2 with sulfuric acid.

- · Gradually add a 50% excess of aqueous sodium bisulfite with stirring at room temperature. (Other reducers such as thiosulfate or ferrous salts may substitute; do NOT use carbon, sulfur or other strong reducing agents). An increase in temperature indicates reaction is taking place. If no reaction is observed on the addition of about 10% of the sodium bisulfite solution, initiate it by cautiously adding more acid.
- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified

### Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols: None Hazard class or Division: 5.1 Identification Numbers: UN1479 PG: III Label Codes: 5.1 Special provisions: 62, IB8, IP3, T1,

TP33

Packaging: Exceptions: 152 Packaging: Non- bulk: 213 Packaging: Exceptions: 152 Quantity limitations: 25 kg

Passenger aircraft/rail:

Quantity Limitations: Cargo 100 kg Vessel stowage: Location: B

aircraft only:

Vessel stowage: Other: 56, 58,

106, 138

Hazardous materials descriptions and proper shipping names:

Oxidizing solid, n.o.s.

Air Transport IATA:

ICAO/IATA Class: 5.1 ICAO/IATA Subrisk: None UN/ID Number: 1479 Packing Group: III

Special provisions: A3

Cargo Only

Packing Instructions: 100 kg Maximum Qty/Pack: 563 Passenger and Cargo Passenger and Cargo Packing Instructions: 25 kg Maximum Qty/Pack: 559

Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity

Packing Instructions: 10 kg Maximum Qty/Pack: Y546 Shipping Name: OXIDIZING SOLID, N.O.S. \*(CONTAINS 3,3'-DIOCTADECYLOXACARBOCYANINE PERCHLORATE)

Maritime Transport IMDG: IMDG Class: 5.1 IMDG Subrisk: None UN Number: 1479 Packing Group: III

EMS Number: F-A, S-Q Special provisions: 223 274 900

Limited Quantities: 5 kg

Shipping Name: OXIDIZING SOLID, N.O.S. (contains 3,3'-dioctadecyloxacarbocyanine perchlorate)

### Section 15 - REGULATORY INFORMATION

#### 3,3'-dioctadecyloxacarbocyanine perchlorate (CAS: 34215-57-1) is found on the following regulatory lists;

"Canada - British Columbia Occupational Exposure Limits", "Canada - Ontario Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits", "Canada National Pollutant Release Inventory (NPRI)", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - Michigan Exposure Limits for Air Contaminants", "US - Oregon Permissible Exposure Limits (Z-1)", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants"

#### **Section 16 - OTHER INFORMATION**

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

  A list of reference resources used to assist the committee may be found at:

  www.chemwatch.net/references
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or

criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Feb-15-2009 Print Date: Apr-26-2011