Dodecyl arachidate

sc-214950

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Dodecyl arachidate

STATEMENT OF HAZARDOUS NATURE

Not considered a hazardous substance according to OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C32-H64-O2, CH3(CH2)18CO2(CH2)10CH3, "lauryl eicosanoate", "lauryl arachidate"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	1		
Toxicity:	0		
Body Contact:	0		Min/Nil=0 Low=1
Reactivity:	1		Moderate=2
Chronic:	0		High=3 Extreme=4

CANADIAN WHMIS SYMBOLS

None

EMERGENCY OVERVIEW
RISK
POTENTIAL HEALTH EFFECTS
ACUTE HEALTH EFFECTS

SWALLOWED

■ The material has NOT been classified as "harmful by ingestion".

This is because of the lack of corroborating animal or human evidence.

■ Fatty acid esters have fairly low toxicity.

EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn).

Slight abrasive damage may also result.

SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Inhalation of oil droplets/ aerosols may cause discomfort and may produce chemical pneumonitis.
- Fine mists generated from plant/ vegetable (or more rarely from animal) oils may be hazardous.

Extreme heating for prolonged periods, at high temperatures, may generate breakdown products which include acrolein and acrolein-like substances.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified using animal models); nevertheless exposure by all routes should be minimized as a matter of course.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS					
NAME	CAS RN	%			
arachidic acid lauryl ester	42232-82-6	>98			

Section 4 - FIRST AID MEASURES

SWALLOWED

· Immediately give a glass of water. · First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE

■ If this product comes in contact with eyes: · Wash out immediately with water. · If irritation continues, seek medical attention.

SKIN

■ If skin or hair contact occurs: Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.

INHALED

· If dust is inhaled, remove from contaminated area. · Encourage patient to blow nose to ensure clear passage of breathing. · If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

■ Treat symptomatically.

	Section 5 - FIRE FIGHTING MEASU
Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%):	Not available

EXTINGUISHING MEDIA

- · Foam.
- \cdot Dry chemical powder.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

 \cdot Combustible solid which burns but propagates flame with difficulty.

· Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), acrolein, other pyrolysis products typical of burning organic material

CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.

MAJOR SPILLS

- · Clear area of personnel and move upwind.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

■ Rags wet / soaked with unsaturated hydrocarbons / drying oils may auto-oxidise; generate heat and, in-time, smoulder and ignite. This is especially the case where oil-soaked materials are folded, bunched, compressed, or piled together - this allows the heat to accumulate or even accelerate the reaction

Oily cleaning rags should be collected regularly and immersed in water, or spread to dry in safe-place away from direct sunlight or stored, immersed, in solvents in suitably closed containers.

- · Limit all unnecessary personal contact.
- · Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- · Lined metal can, Lined metal pail/drum
- · Plastic pail.

STORAGE REQUIREMENTS

- Store in original containers.
- · Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z-3)	arachidic acid lauryl ester (Inert or Nuisance Dust: (d) Total dust)		10						Oregon Permissible Exposure Limits (PELs) are different than the federal limits.
US OSHA Permissible Exposure Levels (PELs) - Table Z3	arachidic acid lauryl ester (Inert or Nuisance Dust: (d) Respirable fraction)		5						

US OSHA arachidic acid Permissible lauryl ester (Inert **Exposure Levels** or Nuisance 15 (PELs) - Table Dust: (d) Total dust) arachidic acid lauryl ester US - Hawaii Air (Particulates not Contaminant 10 other wise Limits regulated - Total dust) arachidic acid lauryl ester US - Hawaii Air (Particulates not Contaminant other wise 5 Limits regulated -Respirable fraction) Oregon arachidic acid Permissible US - Oregon lauryl ester (Inert

Permissible or Nuisance
Exposure Limits Dust:(d)
(Z-3) Respirable

(Z-3) Respirab fraction)

Oregon
Permissible
Exposure
Limits (PELs)
are different
than the
federal limits.

ENDOELTABLE

PERSONAL PROTECTION

5

RESPIRATOR

• particulate.

Consult your EHS staff for recommendations

EYE

- · Safety glasses with side shields
- · Chemical goggles.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- · frequency and duration of contact,
- · chemical resistance of glove material,
- $\cdot \ \text{glove thickness and} \\$
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- nitrile rubber
- · butyl rubber
- · fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

■ No special equipment needed when handling small quantities.

OTHERWISE:

- · Overalls.
- · Barrier cream.

ENGINEERING CONTROLS

■ Care: Atmospheres in bulk storages and even apparently empty tanks may be hazardous by oxygen depletion. Atmosphere must be checked before entry.

Requirements of State Authorities concerning conditions for tank entry must be met. Particularly with regard to training of crews for tank entry; work permits; sampling of atmosphere; provision of rescue harness and protective gear as needed.

- · Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- · Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

State	Divided solid	Molecular Weight	480.9
Melting Range (°F)	Not available	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	>230	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Off-white solid; does not mix well with water. Soluble in chloroform.

Group A substances are rather lipophilic (log Kow 10-15) in character due to the large number of carbon numbers in the ester molecule (e.g., 24,26, 31 carbons) and have relatively high boiling points. Owing to the non-volatile nature of these esters, their vapor pressures are very low and difficult to determine experimentally. Water solubility is also very low.

Material Value

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

■ Product is considered stable and hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Avoid contamination of water, foodstuffs, feed or seed.
- $\cdot \ \text{Materials soaked with plant/ vegetable derived (and rarely, animal) oils may undergo spontaneous combustion.}$

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

arachidic acid lauryl ester

TOXICITY AND IRRITATION

ARACHIDIC ACID LAURYL ESTER:

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- Group A aliphatic monoesters (fatty acid esters)

According to a classification scheme described by the American Chemistry Council' Aliphatic Esters Panel, Group A substances are simple monoesters derived from a monofunctional alcohol, such as 2-ethylhexyl alcohol (C8-alcohol) or tridecyl alcohol (C13 alcohol) and fatty acids such as palmitic, stearic, oleic or linoleic acid. Metabolism of the parent esters is expected to yield the corresponding fatty acids and alcohols. The fatty acids are naturally occurring and have a low order of toxicity.

Group A substances are rather lipophilic (log Kow 10-15) in character due to the large number of carbon numbers in the ester molecule (e.g., 24,26, 31 carbons) and have relatively high boiling points. Owing to the non-volatile nature of these esters, their vapour pressures are very low and difficult to determine experimentally. Water solubility is also very low.

Mammalian Toxicity:

Acute Toxicity. Many higher fatty acid esters, such as the stearates, oleates and palmitates, have been cleared for use in the food industry; thus, their general physiological response and toxicity are very low. Many of the higher fatty acid esters are considered safe for use in cosmetics.

Available acute toxicity data indicate that the fatty acid esters in Group A, in general, have a low order of toxicity [e.g., palmitic acid, 2-ethylhexyl ester (LD50 > 5 g/kg) and tall oil fatty acid 2-ethylhexyl ester (LD50 > 64 g/kg)]. Consistent with that, available data spanning the carbon range of C22 to C34 indicate that the alkyl fatty acid esters are not toxic by oral administration [rat LD50 (oral) > 5g/kg, with range from 5 g/kg to 64 kg/kg]. Butyl stearate is tolerated by rats without lethal effects at oral doses of 32 g/kg while octyl oleate has a reported LD50 of >40 ml/kg.

In addition, many alkyl fatty acid esters, such as the stearates, oleates and palmitates, have been demonstrated to be not toxic by dermal administration

Because of the low volatility of these substances, inhalation exposure at toxicological significant levels is not expected.

Repeated Dose Toxicity. 28-Day oral gavage studies in rats with decyl oleate (CAS 3687-46-5) at doses of 100,500 and 1000 mg/kg showed no toxicity as noted with respect to clinical symptoms, biochemistry, hematology, gross lesions or tissue/organ histopathology. The NOAEL was estimated to be 1000 mg/kg. Similarly, octyl or (2-ethylhexyl) stearate showed a NOAEL of 1000 mg/kg in 28-day oral gavage studies in rats

In chronic two-year feeding studies with butyl stearate at concentrations of 1.25% or 6.25% in the diet, exposed rats showed no significant difference from control animals with respect to growth, survival, blood counts or other haematological parameters.

Besides the two substances above, various other long-chain fatty acid esters have also been studied for their repeated dose toxicity and the findings support a low order of toxicity.

Genotoxicity:

Genetic Toxicity (Salmonella). Fatty acid, C 16- 18 saturated and C 18 unsaturated, 2-ethylhexanoate (CAS 85049-37-2); octyl stearate (CAS 109-36-4); and decyl oleate (CAS 3687-46-5)] were shown to be negative in the Ames assay. Since the monoesters are similar in chemical structure and carbon-number range, it is unlikely that esters in Group A will induce point mutation. In addition, the chemistry of the long-chain fatty acids does not suggest the likelihood that these substances or their constituent substructures (i.e., fatty acids, alcohols) are reactive or electrophilic in nature.

Genetic Toxicity (Chromosomal Aberrations). The chemistry of the long-chain fatty acid esters does not suggest the likelihood that these substances or their constituent substructures (i.e., fatty acids, alcohols) are reactive or electrophilic in nature. Therefore, the likelihood that the fatty acid monoesters may cause chromosomal mutation is very low.

Reproductive toxicity: Assessment of reproductive effects of alkyl fatty acid esters in Group A is based primarily on studies with butyl stearate. Fertility, litter size and survival of offspring were normal in rats fed diets containing 6.25% butyl stearate for 10 weeks. However, growth was reduced in offspring during the pre-weaning and post-weaning periods. No gross lesions were noted among the offspring killed at the end of the 21-day post-weaning periods These results indicate that long-chain fatty acid esters do not cause reproductive toxicity in rats. Given the relative low order of toxicity for long-chain fatty acid esters and their relative non-electrophilic and non-reactive nature, it seems unlikely that the long-chain fatty acid esters would present serious reproductive concerns.

Developmental Toxicity/ Teratogenicity. Assessment of developmental effects for the long-chain fatty acid esters in this group was based primarily on data reported for fatty acid, C16-18, 2-ethylhexyl ester (CAS 91031-48-0). In oral gavage studies in rats administered doses of 100,300 and 1000 mg/kg during gestation, the maternal NOAEL was > 1000 mg/kg and the NOAEL for teratogenicity was >1000 mg/kg. Based on these findings and the fact Group A substances, are very chemically similar to the structure of the tested material, read-across assessment is thought to be appropriate.

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility arachidic acid lauryl LOW No Data Available LOW LOW

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

arachidic acid lauryl ester (CAS: 42232-82-6) is found on the following regulatory lists;

"US DOT Coast Guard Bulk Hazardous Materials - List of Flammable and Combustible Bulk Liquid Cargoes"

Section 16 - OTHER INFORMATION

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jan-14-2010 Print Date: Apr-28-2011