N,N-Dimethyl-p-phenylenediamine dihydrochloride sc-215495 **Material Safety Data Sheet** The Power to Questio Hazard Alert Code Key: **EXTREME** HIGH MODERATE LOW # Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION ### **PRODUCT NAME** N,N-Dimethyl-p-phenylenediamine dihydrochloride #### STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. #### NFPA #### **SUPPLIER** Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 #### **PRODUCT USE** Used in microscopy and in tests for acetone, uric acid, thallic salts, oxidases, lignin, ozone, hydrogen peroxide, hydrogen sulfide and bromide. Regeant #### **SYNONYMS** C8-H2-N2.2HCL, "p-aminodimethylaniline dihydrochloride", "p-aminodimethylaniline dihydrochloride", "p-dimethylaminoaniline dihydrochloride", "USAF EK-7423", "N, N-dimethyl-1, 4-phenylenediamine dihydrochloride", "N, N-dimethyl-1, 4-phenylenediamine dihydrochloride", "N, N-dimethyl-1, 4-phenylenediamine dichloride", 4-phenylene # **Section 2 - HAZARDS IDENTIFICATION** # **CANADIAN WHMIS SYMBOLS** # **EMERGENCY OVERVIEW** ### **RISK** May cause SENSITIZATION by skin contact. Limited evidence of a carcinogenic effect. Toxic by inhalation, in contact with skin and if swallowed. Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. ### POTENTIAL HEALTH EFFECTS **ACUTE HEALTH EFFECTS** #### **SWALLOWED** - Toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 40 gram may be fatal or may produce serious damage to the health of the individual. - The substance and/or its metabolites may bind to hemoglobin inhibiting normal uptake of oxygen. This condition, known as "methemoglobinemia", is a form of oxygen starvation (anoxia). Symptoms include cyanosis (a bluish discoloration skin and mucous membranes) and breathing difficulties. Symptoms may not be evident until several hours after exposure. At about 15% concentration of blood methemoglobin there is observable cyanosis of the lips, nose and earlobes. Symptoms may be absent although euphoria, flushed face and headache are commonly experienced. At 25-40%, cyanosis is marked but little disability occurs other than that produced on physical exertion. At 40-60%, symptoms include weakness, dizziness, lightheadedness, increasingly severe headache, ataxia, rapid shallow respiration, drowsiness, nausea, vomiting, confusion, lethargy and stupor. Above 60% symptoms include dyspnea, respiratory depression, tachycardia or bradycardia, and convulsions. Levels exceeding 70% may be fatal. #### **EYE** ■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals. #### SKIN - Skin contact with the material may produce toxic effects; systemic effectsmay result following absorption. - The material is not thought to be a skin irritant (as classified using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. - Open cuts, abraded or irritated skin should not be exposed to this material. - Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. #### **INHALED** - The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. - Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. - Inhalation of vapors or aerosols (mists, fumes), generated by the material during the course of normal handling, may produce toxic effects. #### CHRONIC HEALTH EFFECTS ■ There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Phenylenediamine derivatives can cause skin damage, which generally disappears when exposure ceases. Most arylamines are powerful poisons to the blood-making system. High chronic doses cause congestion of the spleen and tumor formation. #### Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS ## **HAZARD RATINGS** NAME CAS RN % N,N-dimethyl-p-phenylenediamine dihydrochloride 536-46-9 >98 # **Section 4 - FIRST AID MEASURES** #### **SWALLOWED** - · - IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. - Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise: - For advice, contact a Poisons Information Center or a doctor. - Urgent hospital treatment is likely to be needed. - If conscious, give water to drink. - INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear a protective glove when inducing vomiting by mechanical means. - In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. - If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist. If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS. #### **EYE** - If this product comes in contact with the eyes: - Immediately hold eyelids apart and flush the eye continuously with running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes. - · Transport to hospital or doctor without delay. - · Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. #### SKIN - If skin or hair contact occurs: - Quickly but gently, wipe material off skin with a dry, clean cloth. - Immediately remove all contaminated clothing, including footwear. - Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center. - · Transport to hospital, or doctor. ### **INHALED** . - · If fumes or combustion products are inhaled remove from contaminated area. - Lay patient down. Keep warm and rested. - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. - Transport to hospital, or doctor, without delay. #### **NOTES TO PHYSICIAN** ■ Treat symptomatically. The material may induce methemoglobinemia following exposure. - Initial attention should be directed at oxygen delivery and assisted ventilation if necessary. Hyperbaric oxygen has not demonstrated substantial benefits. - Hypotension should respond to Trendelenburg's position and intravenous fluids; otherwise dopamine may be needed. - Symptomatic patients with methemoglobin levels over 30% should receive methylene blue. (Cyanosis, alone, is not an indication for treatment). The usual dose is 1-2 mg/kg of a 1% solution (10 mg/ml) IV over 50 minutes; repeat, using the same dose, if symptoms of hypoxia fail to subside within 1 hour. BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): | Determinant | Index | Sampling Time | Comment | |---------------------------|--------------------|------------------------|-----------| | 1. Methemoglobin in blood | 1.5% of hemoglobin | During or end of shift | B, NS, SQ | B: Background levels occur in specimens collected from subjects NOT exposed NS: Non-specific determinant; also observed after exposure to other materials SQ: Semi-quantitative determinant - Interpretation may be ambiguous; should be used as a screening test or confirmatory test. | Section 5 - FIRE FIGHTING MEASURES | | | | | |------------------------------------|----------------|--|--|--| | Vapour Pressure (mmHG): | Negligible | | | | | Upper Explosive Limit (%): | Not available | | | | | Specific Gravity (water=1): | Not available. | | | | | Lower Explosive Limit (%): | Not available | | | | #### **EXTINGUISHING MEDIA** - · Water spray or fog. - Foam. - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. ### **FIRE FIGHTING** - Alert Emergency Responders and tell them location and nature of hazard. - · Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. - Use fire fighting procedures suitable for surrounding area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. # GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS - Combustible solid which burns but propagates flame with difficulty. - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited. - Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. - Build-up of electrostatic charge may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), sulfur oxides (SOx), other pyrolysis products typical of burning organic material. May emit poisonous fumes #### FIRE INCOMPATIBILITY ■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result #### PERSONAL PROTECTION Glasses: Chemical goggles. Gloves: Respirator: Particulate ### Section 6 - ACCIDENTAL RELEASE MEASURES #### MINOR SPILLS - Clean up waste regularly and abnormal spills immediately. - Avoid breathing dust and contact with skin and eyes. - Wear protective clothing, gloves, safety glasses and dust respirator. - Use dry clean up procedures and avoid generating dust. - Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use). - Dampen with water to prevent dusting before sweeping. - Place in suitable containers for disposal. #### **MAJOR SPILLS** - Clear area of personnel and move upwind. - Alert Emergency Responders and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. - Stop leak if safe to do so. - Contain spill with sand, earth or vermiculite. - Collect recoverable product into labeled containers for recycling. - Neutralize/decontaminate residue. - Collect solid residues and seal in labeled drums for disposal. - Wash area and prevent runoff into drains. - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. - If contamination of drains or waterways occurs, advise emergency services. ### PROTECTIVE ACTIONS FOR SPILL ### **FOOTNOTES** 1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance. 2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects. 3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material. 4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder. 5 Guide 154 is taken from the US DOT emergency response guide book. 6 IERG information is derived from CANUTEC - Transport Canada. ### ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm) AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure. AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape. AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death. ### **Section 7 - HANDLING AND STORAGE** #### PROCEDURE FOR HANDLING - · Avoid all personal contact, including inhalation. - · Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - · Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - · Avoid contact with incompatible materials. - · When handling, DO NOT eat, drink or smoke. - · Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - · Work clothes should be laundered separately. - Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storing and handling recommendations. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - Do NOT cut, drill, grind or weld such containers - In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. #### RECOMMENDED STORAGE METHODS . - · Lined metal can, Lined metal pail/drum - Plastic pail - Polyliner drum - Packing as recommended by manufacturer. - · Check all containers are clearly labeled and free from leaks. For low viscosity materials - Drums and ierricans must be of the non-removable head type. - Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): - · Removable head packaging; - · Cans with friction closures and - low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages * . In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *. * unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic. All inner and sole packagings for substances that have been assigned to Packaging Groups I or II on the basis of inhalation toxicity criteria, must be hermetically sealed. ### STORAGE REQUIREMENTS - Material is hygroscopic, i.e. absorbs moisture from the air. Keep containers well sealed in storage. - Store in original containers. - Keep containers securely sealed. - · Store in a cool, dry, well-ventilated area. - · Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storing and handling recommendations. ### SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS ### Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION #### **EXPOSURE CONTROLS** | Source | Material | TWA
ppm | TWA
mg/m³ | STEL
mg/m³ | | TWA
F/CC | Notes | |---|--|------------|--------------|---------------|--|-------------|-------| | US - Oregon Permissible
Exposure Limits (Z3) | N,N-dimethyl-p-phenylenediamine
dihydrochloride (Inert or Nuisance
Dust: (d) Total dust) | | 10 | | | | * | | US OSHA Permissible
Exposure Levels (PELs) -
Table Z3 | N,N-dimethyl-p-phenylenediamine
dihydrochloride (Inert or Nuisance
Dust: (d) Respirable fraction) | | 5 | | | | | | US OSHA Permissible
Exposure Levels (PELs) -
Table Z3 | N,N-dimethyl-p-phenylenediamine
dihydrochloride (Inert or Nuisance
Dust: (d) Total dust) | | 15 | | | | | | US - Hawaii Air
Contaminant Limits | N,N-dimethyl-p-phenylenediamine
dihydrochloride (Particulates not other
wise regulated - Total dust) | | 10 | | | | | | US - Hawaii Air
Contaminant Limits | N,N-dimethyl-p-phenylenediamine
dihydrochloride (Particulates not other
wise regulated - Respirable fraction) | | 5 | | | | | | US - Oregon Permissible
Exposure Limits (Z3) | N,N-dimethyl-p-phenylenediamine
dihydrochloride (Inert or Nuisance
Dust: (d) Respirable fraction) | | 5 | | | | * | | US - Tennessee
Occupational Exposure
Limits - Limits For Air
Contaminants | N,N-dimethyl-p-phenylenediamine
dihydrochloride (Particulates not
otherwise regulated Respirable
fraction) | | 5 | | | | | | US - Wyoming Toxic and
Hazardous Substances
Table Z1 Limits for Air
Contaminants | N,N-dimethyl-p-phenylenediamine
dihydrochloride (Particulates not
otherwise regulated (PNOR)(f)-
Respirable fraction) | | 5 | | | | | | US - Michigan Exposure
Limits for Air Contaminants | N,N-dimethyl-p-phenylenediamine
dihydrochloride (Particulates not
otherwise regulated, Respirable dust) | | 5 | | | | | ### MATERIAL DATA N,N-DIMETHYL-P-PHENYLENEDIAMINE DIHYDROCHLORIDE: It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace. At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum. NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply. # PERSONAL PROTECTION Consult your EHS staff for recommendations #### **EYE** - Safety glasses with side shields. - Chemical goggles. - Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses. ### HANDS/FEET ■ Wear chemical protective gloves, eg. PVC. Wear safety footwear or safety gumboots, eg. Rubber. NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended. - · Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. #### **OTHER** - Overalls. - Eyewash unit. - Barrier cream. - Skin cleansing cream. - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. ### **RESPIRATOR** | Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |-------------------|----------------------|----------------------|------------------------| | 10 x PEL | P1 | - | PAPR-P1 | | | Air-line* | - | - | | 50 x PEL | Air-line** | P2 | PAPR-P2 | | 100 x PEL | - | P3 | - | | | | Air-line* | - | | 100+ x PEL | - | Air-line** | PAPR-P3 | ^{* -} Negative pressure demand ** - Continuous flow Explanation of Respirator Codes: Class 1 low to medium absorption capacity filters. Class 2 medium absorption capacity filters. Class 3 high absorption capacity filters. PAPR Powered Air Purifying Respirator (positive pressure) cartridge. Type A for use against certain organic gases and vapors. Type AX for use against low boiling point organic compounds (less than 65°C). Type B for use against certain inorganic gases and other acid gases and vapors. Type E for use against sulfur dioxide and other acid gases and vapors. Type K for use against ammonia and organic ammonia derivatives Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica. Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used. ### **ENGINEERING CONTROLS** - Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. - Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace. - If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: - (a): particle dust respirators, if necessary, combined with an absorption cartridge; - (b): filter respirators with absorption cartridge or canister of the right type; - (c): fresh-air hoods or masks - Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant. Type of Contaminant: Air Speed: direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active 1-2.5 m/s (200-500 f/min.) generation into zone of rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). 2.5-10 m/s (500-2000 f/min.) Within each range the appropriate value depends on: Lower end of the range Upper end of the range | 1: Room air currents minimal or favorable to capture | 1: Disturbing room air currents | |---|----------------------------------| | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4. Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ### Section 9 - PHYSICAL AND CHEMICAL PROPERTIES #### PHYSICAL PROPERTIES Solid Mixes with water. | State | Divided solid | Molecular Weight | 209.14 | |---------------------------|--------------------|--------------------------------|----------------| | Melting Range (°F) | 431.6 (decomposes) | Viscosity | Not Applicable | | Boiling Range (°F) | Not applicable. | Solubility in water (g/L) | Miscible | | Flash Point (°F) | None | pH (1% solution) | < 7 | | Decomposition Temp (°F) | Not Applicable | pH (as supplied) | Not applicable | | Autoignition Temp (°F) | Not available. | Vapour Pressure (mmHG) | Negligible | | Upper Explosive Limit (%) | Not available | Specific Gravity (water=1) | Not available. | | Lower Explosive Limit (%) | Not available | Relative Vapor Density (air=1) | Not applicable | | Volatile Component (%vol) | Negligible | Evaporation Rate | Not applicable | #### **APPEARANCE** ■ Material is hygroscopic, absorbs moisture from surrounding air. White to greyish-white hygroscopic crystalline powder. Freely soluble in water. Soluble in alcohol. Darkens readily when exposed to air. Hygroscopic. ### **Section 10 - CHEMICAL STABILITY** ### CONDITIONS CONTRIBUTING TO INSTABILITY • - Presence of incompatible materials. - Product is considered stable. - Hazardous polymerization will not occur. #### STORAGE INCOMPATIBILITY _ - Many arylamines (aromatic amines such as aniline, N-ethylaniline, o-toluidine, xylidine etc. and their mixtures) are hypergolic (ignite spontaneously) with red fuming nitric acid. When the amines are dissolved in triethylamine, ignition occurs at -60 deg. C. or less. - Various metal oxides and their salts may promote ignition of amine-red fuming nitric acid systems. Soluble materials such as copper(I) oxide, ammonium metavanadate are effective; insoluble materials such as copper(II) oxide, iron(II) oxide, potassium dichromate are also effective. - Avoid oxidizing agents, acids, acid chlorides, acid anhydrides. For incompatible materials - refer to Section 7 - Handling and Storage. ### **Section 11 - TOXICOLOGICAL INFORMATION** N,N-dimethyl-p-phenylenediamine dihydrochloride # **TOXICITY AND IRRITATION** - unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances. - Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. p-Phenylenediamines are oxidised by the liver microsomal enzymes (S9). Pure p-phenylenediamine is non-mutagenic in but becomes mutagenic after it is oxidized. Azo dyes containing phenylenediamine are mutagenic in certain assay most likely due to the formation of oxidized p-phenylenediamine. Modification of the moieties that can be metabolized to p-phenylenediamine by sulfonation, carboxylation or copper complexation eliminated the mutagenic responses. No significant acute toxicological data identified in literature search. #### Section 12 - ECOLOGICAL INFORMATION Refer to data for ingredients, which follows: N,N-DIMETHYL-P-PHENYLENEDIAMINE DIHYDROCHLORIDE: - Harmful to aquatic organisms. - May cause long-term adverse effects in the aquatic environment. - Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. ■ Phenylenediamines are not readily biodegradable via CO2 evolution, but they are susceptible to both hydrolysis and photodegradation. These materials have been shown not to partition to water or air if released into the environment due to their low water solubility and low vapor pressure. Analytical studies of hydrolysis products indicate that the molecule cleaves at the aromatic carbon-nitrogen bond. It is difficult to define clearly the ways in which phenylenediamines are eliminated from the hydrosphere. Elimination processes such as oxidation reactions, adsorption, and stripping effects can only be conjectured. It is impossible to say with any degree of certainty for any of the three isomers what proportion of their elimination is accounted for by biodegradation. The following elimination rates have been found: between 0 and 69 % for o-phenylenediamine, between 0 and 60 % for m-phenylenediamine and between 0 and 100 % for p-phenylenediamine. It is assumed that any phenylenediamines released into the atmosphere destroyed by photodegradation. The calculated half-life is less than 2 hours. The low POW values indicate that bioaccumulation is unlikely to occur to any significant degree. Only one study has dealt with the behaviour of phenylenediamines in soil, in respect to their soil sorption and geoaccumulation. According to this study, adsorption is relatively strong at low concentrations and expandable clay minerals but quite weak at higher concentrations. No information is available on the sorption behaviour against organic material. The substituted p-phenylenediamines and presumably the other isomers, in general, are very toxic to aquatic organisms. ■ Aromatic amines (arylamines), particularly primary aromatic amines, covalently and irreversibly bind to humic substances present in most natural waters. All metabolites with moieties of: anilines, benzidines and toluidines are of environmental concern. Anilines and benzidines are both acutely toxic and toxic depending on the specific aquatic species (except algae). Toluidines represent a similar concern, It has been speculated that aqueous solutions of aromatic amines can be oxidised by organic radicals, but there are no actual data on reaction rates. Based on a study of reaction rate data for these compounds an estimate of the half-life of aromatic amines in water is approximately 100 days, assuming a peroxy radical concentration of 10-10 mole/L in sunlit, oxygenated water ■ DO NOT discharge into sewer or waterways. ### **Section 13 - DISPOSAL CONSIDERATIONS** #### **Disposal Instructions** All waste must be handled in accordance with local, state and federal regulations. Puncture containers to prevent re-use and bury at an authorized landfill. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal. - Recycle wherever possible. - Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material) - Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. # **Section 14 - TRANSPORTATION INFORMATION** # DOT: | Symbols: | None | Hazard class or Division: | 6.1 | |--|--------|--|-------------------------| | Identification Numbers: | UN2811 | PG: | II | | Label Codes: | 6.1 | Special provisions: | IB8, IP2, IP4, T3, TP33 | | Packaging: Exceptions: | 153 | Packaging: Non-bulk: | 212 | | Packaging: Exceptions: | 153 | Quantity limitations: Passenger aircraft/rail: | 25 kg | | Quantity Limitations: Cargo aircraft only: | 100 kg | Vessel stowage: Location: | В | | Vessel stowage: Other: | None | | | Hazardous materials descriptions and proper shipping names: Toxic solids, organic, n.o.s. #### Air Transport IATA: | ICAO/IATA Class: | 6.1 | ICAO/IATA Subrisk: | None | |---------------------|------|--------------------|------| | UN/ID Number: | 2811 | Packing Group: | II | | Special provisions: | A3 | | | Shipping TOXIC SOLID. ORGANIC. N.O.S. *(CONTAINS N.N-DIMETHYL-P-PHENYLENEDIAMINE Name: DIHYDROCHLORIDE) **Maritime Transport IMDG:** | IMDG Class: | 6.1 | IMDG Subrisk: | None | |-------------|---------|---------------------|------| | UN Number: | 2811 | Packing Group: | II | | EMS Number: | F-A,S-A | Special provisions: | 274 | Limited Quantities: 500 g Shipping Name: TOXIC SOLID, ORGANIC, N.O.S.(contains N,N-dimethyl-p-phenylenediamine dihydrochloride) # **Section 15 - REGULATORY INFORMATION** N,N-dimethyl-p-phenylenediamine dihydrochloride (CAS: 536-46-9) is found on the following regulatory lists; "Canada Domestic Substances List (DSL)", "US Toxic Substances Control Act (TSCA) - Inventory" # **Section 16 - OTHER INFORMATION** #### LIMITED EVIDENCE - Cumulative effects may result following exposure*. * (limited evidence). Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL. - Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references. - The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. Issue Date: Sep-7-2008 Print Date:Apr-21-2010