Tetrafluoroboric acid solution

sc-215953

Material Safety Data Sheet

Hazard Alert Code Key:

EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME
Tetrafluoroboric acid solution

STATEMENT OF HAZARDOUS NATURE

NFPA

HEALTH HAZARD 3
FLAMMABILITY 0
STABILITY 0

SUPPLIER
Company: Santa Cruz Biotechnology, Inc.
Address:
2145 Delaware Ave
Santa Cruz, CA 95060
Telephone: 800.457.3801 or 831.457.3800
Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305
Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE
Used in the production of fluoborates, in the electrolytic brightening of aluminium, as a throwing power aid in electrolytic plating baths, in metal cleaning, in making stabilised diazo salts, in the production of acetals and as an esterification catalyst. Laboratory reagent.

SYNONYMS

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW
RISK
Harmful if swallowed.
Causes burns.
Risk of serious damage to eyes.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED
- The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and esophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Swelling of the epiglottis may make it difficult to breathe which may result in suffocation. More severe exposure may result in vomiting blood and thick mucus, shock, abnormally low blood pressure, fluctuating pulse, shallow respiration and clammy skin, inflammation of stomach wall, and rupture of esophageal tissue. Untreated shock may eventually result in kidney failure. Severe cases may result in perforation of the stomach and abdominal cavity with consequent infection, rigidity and fever. There may be severe narrowing of the esophageal or pyloric sphincters; this may occur immediately or after a delay of weeks to years. There may be coma and convulsions, followed by death due to infection of the abdominal cavity, kidneys or lungs.
- Fluoride causes severe loss of calcium in the blood, with symptoms appearing several hours later including painful and rigid muscle contractions of the limbs. Cardiovascular collapse can occur and may cause death with increased heart rate and other heart rhythm irregularities. The brain and kidneys may be affected. Other toxic effects include headache, increased saliva output, jerking of the eyeball and dilated pupils, lethargy, stupor, coma and rarely, convulsions.

EYE
- The material can produce chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
- If applied to the eyes, this material causes severe eye damage.
- Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possibly irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply opaque resulting in blindness.
- Experiments in which a 20-percent aqueous solution of hydrofluoric acid (hydrogen fluoride) was instilled into the eyes of rabbits caused immediate damage in the form of total corneal opacification and conjunctival ischemia; within an hour, corneal stroma edema occurred, followed by necrosis of anterior ocular structures.

SKIN
- The material can produce chemical burns following direct contact with the skin.
- Skin contact is not thought to produce harmful health effects (as classified using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Skin contact with acid corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.
- Fluorides are easily absorbed through the skin and cause death of soft tissue and erode bone. Healing is delayed and death of tissue may continue to spread beneath skin.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED
- The material can cause respiratory irritation in some persons. The body’s response to such irritation can cause further lung damage.
- Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness. Swelling of the lungs can occur, either immediately or after a delay; symptoms of this include chest tightness, shortness of breath, frothy phlegm and cyanosis. Lack of oxygen can cause death hours after onset.
- Acute effects of fluoride inhalation include irritation of nose and throat, coughing and chest discomfort. A single acute over-exposure may even cause nose bleed. Pre-existing respiratory conditions such as emphysema, bronchitis may be aggravated by exposure. Occupational asthma may result from exposure.

CHRONIC HEALTH EFFECTS
- Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
- Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs. Chronic exposure may inflame the skin or conjunctiva.
- Extended exposure to inorganic fluorides causes fluorosis, which includes signs of joint pain and stiffness, tooth discoloration, nausea and vomiting, loss of appetite, diarrhea or constipation, weight loss, anemia, weakness and general unwellness. There may also be frequent urination and thirst. Redness, itchiness and allergy-like inflammation of the skin and mouth cavity can occur. The central nervous system may be involved.
- Hydrogen fluoride easily penetrates the skin and causes destruction and corrosion of the bone and underlying tissue. Ingestion causes severe pains and burns in the mouth and throat and blood calcium levels are dangerously reduced. Symptoms include spasm and twitching of the muscles, high fever, convulsions and general extreme pain. Inhalation may cause corrosion of the throat, nose and lungs, leading to severe inflammation and lung swelling.
- Fluorborates accumulate in the thyroid gland, preventing the uptake of iodine. Chronic exposure to boron trifluoride can increase levels of bone fluoride and cause dental fluorosis.
- The substance is capable of causing severe and potentially fatal blood calcium deficiency, teeth and bone changes, asthma and symptoms resembling rheumatism. Sufferers of bronchitis and asthma may be affected worse than others. (UW&R-CCINFO)
HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Min/Nil=0
Low=1
Moderate=2
High=3
Extreme=4

<table>
<thead>
<tr>
<th>NAME</th>
<th>CAS RN</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>fluoboric acid</td>
<td>16872-11-0</td>
<td>40 - 50</td>
</tr>
<tr>
<td>water</td>
<td>7732-18-5</td>
<td>60 - 50</td>
</tr>
<tr>
<td>hydrofluoric acid</td>
<td>7664-39-3</td>
<td>trace</td>
</tr>
</tbody>
</table>

Section 4 - FIRST AID MEASURES

SWALLOWED

• IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
• Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
 • For advice, contact a Poisons Information Center or a doctor.
 • Urgent hospital treatment is likely to be needed.
 • If conscious, give water to drink.
 • INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.
• In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
• If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
• If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

• If this product comes in contact with the eyes:
 • Immediately hold eyelids apart and flush the eye continuously with running water.
 • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 • Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
 • Transport to hospital or doctor without delay.
 • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

• If there is evidence of severe skin irritation or skin burns:
 • Avoid further contact. Immediately remove contaminated clothing, including footwear.
 • Flush skin under running water for 15 minutes.
 • Avoiding contamination of the hands, massage calcium gluconate gel into affected areas, pay particular attention to creases in skin.
 • Contact the Poisons Information Centre.
 • Continue gel application for at least 15 minutes after burning sensation ceases.
 • If pain recurs, repeat application of calcium gluconate gel or apply every 20 minutes.
 • If no gel is available, continue washing for at least 15 minutes, using soap if available. If patient is conscious, give six calcium gluconate or calcium carbonate tablets in water by mouth.
 • Transport to hospital, or doctor, urgently.

INHALED

• If fumes or combustion products are inhaled remove from contaminated area.
 • Lay patient down. Keep warm and rested.
 • Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
 • Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
 • Transport to hospital, or doctor, without delay.

For massive exposures:
• If dusts, vapors, aerosols, fumes or combustion products are inhaled, remove from contaminated area.
• Lay patient down.
• Keep warm and rested.
• Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
Perform CPR if necessary.
If victim is conscious, give six calcium gluconate or calcium carbonate tablets in water by mouth.
Transport to hospital, or doctor, urgently.

NOTES TO PHYSICIAN
• Treat symptomatically.
For acute or short term repeated exposures to strong acids:
• Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
• Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
• Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
• Strong acids produce a coagulation necrosis characterized by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues.

INGESTION:
• Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
• DO NOT attempt to neutralize the acid since exothermic reaction may extend the corrosive injury.
• Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
• Charcoal has no place in acid management.
• Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:
• Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
• Deep second-degree burns may benefit from topical silver sulfadiazine.

EYE:
• Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjunctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralizing agents or any other additives. Several liters of saline are required.
• Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
• Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology].

For acute or short term repeated exposures to fluorides:
• Fluoride absorption from gastro-intestinal tract may be retarded by calcium salts, milk or antacids.
• Fluoride particulates or fume may be absorbed through the respiratory tract with 20-30% deposited at alveolar level.
• Peak serum levels are reached 30 mins. post-exposure; 50% appears in the urine within 24 hours.
• For acute poisoning (endotracheal intubation if inadequate tidal volume), monitor breathing and evaluate/monitor blood pressure and pulse frequently since shock may supervene with little warning. Monitor ECG immediately; watch for arrhythmias and evidence of Q-T prolongation or T-wave changes. Maintain monitor. Treat shock vigorously with isotonic saline (in 5% glucose) to restore blood volume and enhance renal excretion.
• Where evidence of hypocalcemic or normocalcemic tetany exists, calcium gluconate (10 ml of a 10% solution) is injected to avoid tachycardia.

BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

```markdown
<table>
<thead>
<tr>
<th>Determinant</th>
<th>Index</th>
<th>Sampling Time</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorides in urine</td>
<td>3 mg/gm creatinine</td>
<td>Prior to shift</td>
<td>B, NS</td>
</tr>
<tr>
<td></td>
<td>10 mg/gm creatinine</td>
<td>End of shift</td>
<td>B, NS</td>
</tr>
</tbody>
</table>
```

B: Background levels occur in specimens collected from subjects NOT exposed
NS: Non-specific determinant; also observed after exposure to other exposures.

Section 5 - FIRE FIGHTING MEASURES

<table>
<thead>
<tr>
<th>Vapor Pressure (mmHg):</th>
<th>5.25 to 1.4 @ 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Specific Gravity (water=1):</td>
<td>1.23 to 1.37</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

EXTINGUISHING MEDIA
• Water spray or fog.
• Foam.
• Dry chemical powder.
• BCF (where regulations permit).
• Carbon dioxide.

FIRE FIGHTING
• Alert Emergency Responders and tell them location and nature of hazard.
• Wear full body protective clothing with breathing apparatus.
• Prevent, by any means available, spillage from entering drains or water course.
• Use fire fighting procedures suitable for surrounding area.
DO NOT approach containers suspected to be hot.
Cool fire exposed containers with water spray from a protected location.
If safe to do so, remove containers from path of fire.
Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Non combustible.
- Not considered to be a significant fire risk.
- Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- Heating may cause expansion or decomposition leading to violent rupture of rigid containers.
- May emit corrosive, poisonous fumes. May emit acid smoke.
Decomposition may produce toxic fumes of: hydrogen fluoride, nitrogen oxides (NOx), metal oxides.

FIRE INCOMPATIBILITY
- None known.

PERSONAL PROTECTION

Glasses:
Safety Glasses.
Chemical goggles.
Gloves:
Respirator:
Type B-P Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.
- Clean up all spills immediately.
- Avoid breathing vapors and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable labeled container for waste disposal.

MAJOR SPILLS
- Chemical Class: Acidic compounds, Inorganic

<table>
<thead>
<tr>
<th>SORBENT TYPE</th>
<th>RANK</th>
<th>APPLICATION</th>
<th>COLLECTION</th>
<th>LIMITATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND SPILL - SMALL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>foamed glass - pillows</td>
<td>1</td>
<td>throw</td>
<td>pitchfork</td>
<td>R, P, DGC, RT</td>
</tr>
<tr>
<td>expanded mineral - particulate</td>
<td>2</td>
<td>shovel</td>
<td>shovel</td>
<td>R, I, W, P, DGC</td>
</tr>
<tr>
<td>foamed glass - particulate</td>
<td>2</td>
<td>shovel</td>
<td>shovel</td>
<td>R, W, P, DGC</td>
</tr>
<tr>
<td>LAND SPILL - MEDIUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expanded mineral - particulate</td>
<td>1</td>
<td>blower</td>
<td>skiploader</td>
<td>R, I, W, P, DGC</td>
</tr>
<tr>
<td>foamed glass- particulate</td>
<td>2</td>
<td>blower</td>
<td>skiploader</td>
<td>R, W, P, DGC</td>
</tr>
<tr>
<td>foamed glass - particulate</td>
<td>3</td>
<td>throw</td>
<td>skiploader</td>
<td>R, W, P, DGC</td>
</tr>
</tbody>
</table>

Legend
DGC: Not effective where ground cover is dense
R: Not reusable
I: Not incinerable
P: Effectiveness reduced when rainy
RT: Not effective where terrain is rugged
SS: Not for use within environmentally sensitive sites
W: Effectiveness reduced when windy

Clear area of personnel and move upwind.
Alert Emergency Responders and tell them location and nature of hazard.
Wear full body protective clothing with breathing apparatus.
Prevent, by any means available, spillage from entering drains or water course.
Consider evacuation.
Stop leak if safe to do so.
Contain spill with sand, earth or vermiculite.
Collect recoverable product into labeled containers for recycling.
Neutralize/decontaminate residue.
Collect solid residues and seal in labeled drums for disposal.
Wash area and prevent runoff into drains.
After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)
Isolation Distance 25 meters
Downwind Protection Distance 250 meters

FOOTNOTES
1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.
2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.
3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.
4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrycan or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered “small spills”. LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a “one-tonne” compressed gas cylinder.
6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)
AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.
AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.
AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING
• NOTE: Boron halides react violently with water, and if there is a deficiency of water, a violent explosion may occur. It is therefore highly dangerous to wash ampoules of boron halides (e.g. boron tribromide) with water under any circumstances. Only dry non-polar solvents should be used for cleaning or cooling purposes.
• DO NOT allow clothing wet with material to stay in contact with skin
• Avoid all personal contact, including inhalation.
• Wear protective clothing when risk of exposure occurs.
• Use in a well-ventilated area.
• WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material.
• Avoid smoking, naked lights or ignition sources.
• Avoid contact with incompatible materials.
• When handling, DO NOT eat, drink or smoke.
• Keep containers securely sealed when not in use.
• Avoid physical damage to containers.
• Always wash hands with soap and water after handling.
• Work clothes should be laundered separately.
• Launder contaminated clothing before re-use.
Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS
- DO NOT use aluminum or galvanized containers.
- Check regularly for spills and leaks.
- Lined metal can, Lined metal pail/drum
- Plastic pail
- Polyliner drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
- Removable head packaging;
- Cans with friction closures and
- Low pressure tubes and cartridges may be used.

- Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic.

- Material is corrosive to most metals, glass and other siliceous materials.

STORAGE REQUIREMENTS
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together
O: May be stored together with specific preventions
+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

<table>
<thead>
<tr>
<th>Source</th>
<th>Material</th>
<th>TWA ppm</th>
<th>TWA mg/m³</th>
<th>STEL ppm</th>
<th>STEL mg/m³</th>
<th>Peak ppm</th>
<th>Peak mg/m³</th>
<th>TWA F/CC</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>US - Hawaii Air Contaminant Limits</td>
<td>fluoboric acid (Fluorides (as F))</td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(CAS (Varies with compound))</td>
<td></td>
</tr>
<tr>
<td>Canada - Nova Scotia Occupational Exposure Limits</td>
<td>fluoboric acid (Fluorides (as F))</td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TLV Basis: bone damage; fluorosis. BEI</td>
<td></td>
</tr>
<tr>
<td>Canada - Ontario Occupational Exposure Limits</td>
<td>fluoboric acid (Fluorides (as F))</td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants</td>
<td>fluoboric acid (Fluorides (as F))</td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US - Alaska Limits for Air Contaminants</td>
<td>fluoboric acid (Fluorides (as F))</td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits</td>
<td>fluoboric acid (Fluoride, (as F))</td>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following materials had no OELs on our records

• water: CAS:7732-18-5

MATERIAL DATA

FLUOBORIC ACID:

• Based on a study in which the threshold for minimum increase in bone density due to fluoride exposure was 3.38 mg/m³ (as fluoride), the present TLV-TWA has been adopted to prevent irritant effects and disabling bone changes. There is also support for the proposition that occupational exposure below the TLV will have no adverse effect on pregnant women or offspring. IARC has classified fluorides in drinking water as Group 3 carcinogens; i.e. Not classifiable as to its carcinogenicity to humans. Equivocal evidence of carcinogenic activity (osteosarcoma) has been found in male rats administered sodium fluoride in drinking water. (0-175 ppm) Evidence was not found in female rats or in male or female mice.

Odour Threshold for hydrogen fluoride: 0.042 ppm

Note: Detector tubes for hydrogen fluoride, measuring in excess of 1.5 ppm, are available commercially. Long-term measurements (8 hrs) may be conducted to detect concentrations exceeding 0.25 ppm.

Hydrogen fluoride is a primary irritant which as a gas causes severe respiratory irritation and as a liquid which causes severe and painful burns to the skin and eyes. The recommendation for TLV-TWA is based on the results of controlled inhalation studies in human volunteers. The limit is thought to minimise the potential for occurrence of dental and/or osteofluorosis (systemic fluorosis) and to prevent the risk of primary irritation to the eyes, nose, throat and lower respiratory system.

At concentrations exceeding 3 ppm there have been reports of skin reddening and burning of the nose and eyes.

Odour Safety Factor (OSF): 71 (HYDROGEN FLUORIDE).

For inorganic borates and tetraborates:

No data are currently available to establish a causal link between inhalation exposures to sodium tetraborate and chronic respiratory and/or systemic effects.

An occupationally important toxic effect of the sodium tetraborate is their acute irritant effect when in contact with skin and the mucous membranes of the eyes, nose and other sites of the respiratory tract. The irritant properties increase with decreasing water of hydration due to the exothermic effect of hydration. The TLV-TWA of 1 mg/m³ for the anhydrous and pentahydrate forms and 5 mg/m³ for the decahydrate is thought to be protective against the acute irritant effects.

Exposed individuals are reasonably expected to be warned, by smell, that the exposure standard is being exceeded.

Odour Safety Factor (OSF) is determined to fall into either Class A or B.

The Odour Safety Factor (OSF) is defined as:

OSF = Exposure Standard (TWA) ppm / Odor Threshold Value (OTV) ppm

Classification into classes follows:

<table>
<thead>
<tr>
<th>Class</th>
<th>OSF</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>550</td>
<td>Over 90% of exposed individuals are aware by smell that the Exposure Standard (TLV-TWA for example) is being reached, even when distracted by working activities</td>
</tr>
<tr>
<td>B</td>
<td>26-550</td>
<td>Idem for 50-90% of persons being distracted</td>
</tr>
<tr>
<td>C</td>
<td>1-26</td>
<td>Idem for less than 50% of persons being distracted</td>
</tr>
<tr>
<td>D</td>
<td>0.18-1</td>
<td>0-50% of persons aware of being tested perceive by smell that the Exposure Standard is being reached</td>
</tr>
<tr>
<td>E</td>
<td><0.18</td>
<td>Idem for less than 10% of persons aware of being tested</td>
</tr>
</tbody>
</table>

Amore and Hautala * have determined that it is only at an OSF value of 26 that 50% of distracted persons can detect the substance at the Exposure Standard value. In the case of alerted persons, an OSF of 26 means that 99% of them can detect the odor at the Exposure Standard value. It is ONLY for substances belonging to Class A and B that there is a reasonable chance of being warned in time, that the Exposure Standard is being exceeded. * Journal Applied Toxicology: Vol 3, 1983, p272

Note: The use of the OSF may be inappropriate for mixtures where substances mask the odor of others.

WATER:

• No exposure limits set by NOHSC or ACGIH.

PERSONAL PROTECTION

[Images of personal protective equipment]
Consult your EHS staff for recommendations

EYE
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET
- Wear chemical protective gloves, eg. PVC.
- Wear safety footwear or safety gumboots, eg. Rubber.
Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
 - dexterity
Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.
Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER
- Overall.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.

RESPIRATOR
- Full face respirator with supplied air.

RESPIRATOR
- Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

<table>
<thead>
<tr>
<th>Breathing Zone Level ppm (volume)</th>
<th>Maximum Protection Factor</th>
<th>Half-face Respirator</th>
<th>Full-Face Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10</td>
<td>B-1 P</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>50</td>
<td>-</td>
<td>B-1 P</td>
</tr>
<tr>
<td>5000</td>
<td>50</td>
<td>Airline*</td>
<td>-</td>
</tr>
<tr>
<td>5000</td>
<td>100</td>
<td>-</td>
<td>B-2 P</td>
</tr>
<tr>
<td>10000</td>
<td>100</td>
<td>-</td>
<td>B-3 P</td>
</tr>
<tr>
<td>100+</td>
<td>Airline* **</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - Continuous Flow ** - Continuous-flow or positive pressure demand.
The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.
Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facemask pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS
- Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator. Correct fit is essential to obtain adequate protection an approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area.
Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

<table>
<thead>
<tr>
<th>Type of Contaminant</th>
<th>Air Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>solvent, vapors, degreasing etc., evaporating from tank (in still air)</td>
<td>0.25-0.5 m/s (50-100 f/min.)</td>
</tr>
<tr>
<td>aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, picking (released at low velocity into zone of active generation)</td>
<td>0.5-1 m/s (100-200 f/min.)</td>
</tr>
<tr>
<td>direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)</td>
<td>1-2.5 m/s (200-500 f/min.)</td>
</tr>
<tr>
<td>grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)</td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>
Within each range the appropriate value depends on:
Lower end of the range | Upper end of the range
---|---
1: Room air currents minimal or favorable to capture | 1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity
3: Intermittent, low production. | 3: High production, heavy use
4: Large hood or large air mass in motion | 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 ft/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid.
Mixes with water.
Corrosive.
Acid.

<table>
<thead>
<tr>
<th>State</th>
<th>Liquid</th>
<th>Molecular Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Range (°F)</td>
<td>-103</td>
<td></td>
</tr>
<tr>
<td>Boiling Range (°F)</td>
<td>266 (decomposes)</td>
<td></td>
</tr>
<tr>
<td>Flash Point (°F)</td>
<td>Not applicable</td>
<td>pH (1% solution) <1</td>
</tr>
<tr>
<td>Decomposition Temp (°F)</td>
<td>Not Available</td>
<td>pH (as supplied) <1</td>
</tr>
<tr>
<td>Autoignition Temp (°F)</td>
<td>Not applicable</td>
<td>Vapor Pressure (mmHg) 5.25 to 1.4 @ 20</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not applicable</td>
<td>Specific Gravity (water=1) 1.23 to 1.37</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not applicable</td>
<td>Relative Vapor Density (air=1) 3.0</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>100</td>
<td>Evaporation Rate 0.5 BuAc=1</td>
</tr>
</tbody>
</table>

APPEARANCE

Colourless, clear, corrosive, toxic liquid with an acrid odour; mixes with water and alcohol.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Contact with alkaline material liberates heat
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Inorganic acids are generally soluble in water with the release of hydrogen ions. The resulting solutions have pH's of less than 7.0.
- Inorganic acids neutralize chemical bases (for example: amines and inorganic hydroxides) to form salts.
- Neutralization can generate dangerously large amounts of heat in small spaces.
- The dissolution of inorganic acids in water or the dilution of their concentrated solutions with additional water may generate significant heat.
- The addition of water to inorganic acids often generates sufficient heat in the small region of mixing to cause some of the water to boil explosively. The resulting "bumping" can spatter the acid.
- Inorganic acids react with active metals, including such structural metals as aluminum and iron, to release hydrogen, a flammable gas.
- Inorganic acids can initiate the polymerization of certain classes of organic compounds.
- Inorganic acids react with cyanide compounds to release gaseous hydrogen cyanide.
- Inorganic acids generate flammable and/or toxic gases in contact with dithiocarbamates, isocyanates, mercaptans, nitriles, nitrides, sulfides, and strong reducing agents. Additional gas-generating reactions occur with sulfites, nitriles, thiosulfates (to give H2S and SO3), dithionites (SO2), and even carbonates.
- Acids often catalyze (increase the rate of) chemical reactions.

Reacts with mild steel, galvanized steel / zinc producing hydrogen gas which may form an explosive mixture with air.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION
concentrations that have been shown to be toxic to commercially important plants. Significant amounts of boron as borate. Boron is an essential micronutrient for healthy growth of plants. The most appreciable boron exposure to the general population is likely to be ingestion of food and beverages. While some boron will be absorbed in the GI tract, most of the ingested boron is excreted in the feces. Most boron compounds are transformed to borates in soil due to the presence of moisture. Borates are removed from soils by washing with water. The pH of the water and the chemical composition of the soil will control the fate of boron in water. Boron readily hydrolyses in water to form the electrically neutral, weak monobasic acid boric acid (H3BO3) and the monovalent ion, B(OH)4-. In concentrated solutions, boron may polymerise, leading to the formation of complex and diverse molecular arrangements. Because most environmentally relevant boron minerals are highly soluble in water, it is unlikely that mineral equilibria will control the fate of boron in water. Boron was found not to be significantly removed during the conventional treatment of waste water. Boron is generally found in nature bound to oxygen and is never found as the free element. Atmospheric boron may be in the form of particulate matter or aerosols as borides, boron oxides, borates, boranes, organoboron compounds, trihalide boron compounds, or borazines. Borates are relatively soluble in water, and will probably be removed from the atmosphere by precipitation and dry deposition. The half-life of airborne particles is usually on the order of days, depending on the size of the particle and atmospheric conditions. Boron readily hydrolyses in water to form the electrically neutral, weak monobasic acid boric acid (H3BO3) and the monovalent ion, B(OH)4-. In concentrated solutions, boron may polymerise, leading to the formation of complex and diverse molecular arrangements. Because most environmentally relevant boron minerals are highly soluble in water, it is unlikely that mineral equilibria will control the fate of boron in water. Boron was found to not be significantly removed during the conventional treatment of waste water. Boron may, however, be co-precipitated with aluminum, silicon, or iron to form hydroxyborate compounds on the surfaces of minerals.

Waterborne boron may be adsorbed by soils and sediments. Adsorption-desorption reactions are expected to be the only significant mechanism that will influence the fate of boron in water. The extent of boron adsorption depends on the pH of the water and the chemical composition of the soil. The greatest adsorption is generally observed at pH 7.5-9.0. The single most important property of soil that will influence the mobility of boron is the abundance of amorphous aluminum oxide. The extent of boron adsorption has also been attributed to the levels of iron oxide, and to a lesser extent, the organic matter present in the soil, although other studies found that the amount of organic matter present was not important. The adsorption of boron may not be reversible in some soils. The lack of reversibility may be the result of solid-phase formation on mineral surfaces and/or the slow release of boron by diffusion from the interior of clay minerals.

It is unlikely that boron is bioconcentrated significantly by organisms from water. A bioconcentration factor (BCF) relates the concentration of a chemical in the tissues of aquatic and terrestrial animals or plants to the concentration of the chemical in water or soil. The BCFs of boron in marine and freshwater plants, fish, and invertebrates were estimated to be <100. Experimentally measured BCFs for fish have ranged from 52 to 198. These BCFs suggest that boron is not significantly bioconcentrated. As an element, boron itself cannot be degraded in the environment; however, it may undergo various reactions that change the form of boron (e.g., precipitation, polymerization, and acid-base reactions) depending on conditions such as its concentration in water and pH. In nature, boron in generally found in its oxygenated form. In aqueous solution, boron is normally present as boric acid and borate ions, with the dominant form of inorganic boron in natural aqueous systems as undissociated boric acid. Boric acid acts as an electron acceptor in aqueous solution, accepting an hydroxide ion from water to form (B(OH)4)-ion. In dilute solution, the favored form of boron is B(OH)4-. In more concentrated solutions (>0.1 M boric acid) and at neutral to alkaline pH (6–11), polymeric species are formed (e.g., B3O3(OH)4-, B5O6(OH)4-, B3O3(OH)52-, and B4O5(OH)42-). Most boron compounds are transformed to borates in soil due to the presence of moisture. Borates themselves are not further degraded in soil. However, borates can exist in a variety of forms in soil. Borates are removed from soils by water leaching and by assimilation by plants. The most appreciable boron exposure to the general population is likely to be ingestion of food and to a lesser extent in water. As boron is a natural component of the environment, individuals will have some exposure from foods and drinking water. Boron occurs naturally in surface waters and seawater, however, it can be harmful to boron sensitive plants in higher quantities. In some areas such as the American Southwest, boron occurs naturally in surface waters in concentrations that have been shown to be toxic to commercially important plants. Based on the collected information regarding aquatic toxicity, boron is not regarded as dangerous to aquatic organisms. The concentration in

TOXICITY AND IRRITATION

TOXICITY

IRRITATION

<table>
<thead>
<tr>
<th>Oral (Rat) LD50: 100 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (Mouse) LD: 50 mg/kg</td>
</tr>
<tr>
<td>Intraperitoneal (Rat) LD50: 10 mg/kg</td>
</tr>
</tbody>
</table>

- *No significant acute toxicological data identified in literature search.*

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

FLUOBORIC ACID:

- Although small amounts of fluorides are conceded to have beneficial effects two forms of chronic toxic effect, dental fluorosis and skeletal fluorosis may be caused by excessive intake over long periods.
- For boron and borates:

 Environmental fate:

 Boron is generally found in nature bound to oxygen and is never found as the free element. Atmospheric boron may be in the form of particulate matter or aerosols as borides, boron oxides, borates, boranes, organoboron compounds, trihalide boron compounds, or borazines. Borates are relatively soluble in water, and will probably be removed from the atmosphere by precipitation and dry deposition. The half-life of airborne particles is usually on the order of days, depending on the size of the particle and atmospheric conditions. Boron readily hydrolyses in water to form the electrically neutral, weak monobasic acid boric acid (H3BO3) and the monovalent ion, B(OH)4-. In concentrated solutions, boron may polymerise, leading to the formation of complex and diverse molecular arrangements. Because most environmentally relevant boron minerals are highly soluble in water, it is unlikely that mineral equilibria will control the fate of boron in water. Boron was found to not be significantly removed during the conventional treatment of waste water. Boron may, however, be co-precipitated with aluminum, silicon, or iron to form hydroxyborate compounds on the surfaces of minerals.

 Waterborne boron may be adsorbed by soils and sediments. Adsorption-desorption reactions are expected to be the only significant mechanism that will influence the fate of boron in water. The extent of boron adsorption depends on the pH of the water and the chemical composition of the soil. The greatest adsorption is generally observed at pH 7.5-9.0. The single most important property of soil that will influence the mobility of boron is the abundance of amorphous aluminum oxide. The extent of boron adsorption has also been attributed to the levels of iron oxide, and to a lesser extent, the organic matter present in the soil, although other studies found that the amount of organic matter present was not important. The adsorption of boron may not be reversible in some soils. The lack of reversibility may be the result of solid-phase formation on mineral surfaces and/or the slow release of boron by diffusion from the interior of clay minerals.

 It is unlikely that boron is bioconcentrated significantly by organisms from water. A bioconcentration factor (BCF) relates the concentration of a chemical in the tissues of aquatic and terrestrial animals or plants to the concentration of the chemical in water or soil. The BCFs of boron in marine and freshwater plants, fish, and invertebrates were estimated to be <100. Experimentally measured BCFs for fish have ranged from 52 to 198. These BCFs suggest that boron is not significantly bioconcentrated.

 As an element, boron itself cannot be degraded in the environment; however, it may undergo various reactions that change the form of boron (e.g., precipitation, polymerization, and acid-base reactions) depending on conditions such as its concentration in water and pH. In nature, boron in generally found in its oxygenated form. In aqueous solution, boron is normally present as boric acid and borate ions, with the dominant form of inorganic boron in natural aqueous systems as undissociated boric acid. Boric acid acts as an electron acceptor in aqueous solution, accepting an hydroxide ion from water to form (B(OH)4)-ion. In dilute solution, the favored form of boron is B(OH)4-. In more concentrated solutions (>0.1 M boric acid) and at neutral to alkaline pH (6–11), polymeric species are formed (e.g., B3O3(OH)4-, B5O6(OH)4-, B3O3(OH)52-, and B4O5(OH)42-). Most boron compounds are transformed to borates in soil due to the presence of moisture. Borates themselves are not further degraded in soil. However, borates can exist in a variety of forms in soil. Borates are removed from soils by water leaching and by assimilation by plants. The most appreciable boron exposure to the general population is likely to be ingestion of food and to a lesser extent in water. As boron is a natural component of the environment, individuals will have some exposure from foods and drinking water. Boron occurs naturally in surface waters and seawater, however, it can be harmful to boron sensitive plants in higher quantities. In some areas such as the American Southwest, boron occurs naturally in surface waters in concentrations that have been shown to be toxic to commercially important plants. Based on the collected information regarding aquatic toxicity, boron is not regarded as dangerous to aquatic organisms. The concentration in
treated municipal waste water is a factor 100 lower than the NOEC-value for Daphnia magna.
No quality criteria exist for the concentration of boron in soil and compost. Boron is added to farmland when sewage sludge is applied as a soil improving agent, but there is not sufficient data to evaluate its effect on soil organisms. Being an essential micro-nutrient, no adverse effects of boron are expected at low concentrations.

Ecotoxicity:
In aquatic environments low concentrations of borates generally promote the growth of algae, whereas higher concentrations inhibited algal growth. In a growth inhibition test with Scenedesmus subspicatus, an EC50 value of 34 mg B/l was determined. Boric acid toxicity in Daphnia 48 h-LC50 (static test) was found to be 95 mg B/l. In a separate study it was concluded that chronic effects of boron to Daphnia may occur at a concentration of > 10 mg/l.
The toxicity of boron in fish is often higher in soft water than in hard water. The acute toxicity of boron towards Danio rerio (96 h-LC50) has been determined to 14.2 mg B/l. In a fish early life stage test with rainbow trout NOEC levels of boron have been determined in the range between 0.009 and 0.103 mg B/l, whereas the EC50 ranged from 27 to 100 mg B/l dependent on the water hardness.

• Prevent, by any means available, spillage from entering drains or watercourses.
• DO NOT discharge into sewer or waterways.

WATER:

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions
A. General Product Information
Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)
B. Component Waste Numbers
When hydrofluoric acid is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U134 (waste code C,T).

Disposal Instructions
All waste must be handled in accordance with local, state and federal regulations.
• Puncture containers to prevent re-use and bury at an authorized landfill.
Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
A Hierarchy of Controls seems to be common - the user should investigate:
• Reduction
• Reuse
• Recycling
• Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.
• Recycle wherever possible.
• Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
• Treat and neutralize at an approved treatment plant. Treatment should involve: Neutralization with soda-ash or soda-lime followed by:
• Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material).
• Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed.

For small quantities:
• Cautiously dissolve in water.
• Neutralize with sodium carbonate or if product does not dissolve completely add a small quantity of hydrochloric acid followed by sodium carbonate.
• Add excess calcium chloride to precipitate the fluoride and/or carbonate.
• Remove solids to site approved for hazardous wastes.

Section 14 - TRANSPORTATION INFORMATION

DOT:
Symbols: None
Hazard class or Division: 8
Identification Numbers: UN1775
PG: II
fluoboric acid (CAS: 16872-11-0) is found on the following regulatory lists:
Regulations for ingredients
water (CAS: 7732-18-5) is found on the following regulatory lists;
"Canada Domestic Substances List (DSL)","Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)","Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)","IMO IBC Code Chapter 18: List of products to which the Code does not apply","OECD Representative List of High Production Volume (HPV) Chemicals","US - Pennsylvania - Hazardous Substance List","US DOE Temporary Emergency Exposure Limits (TEELs)","US NFPA 30B Manufacture and Storage of Aerosol Products - Chemical Heat of Combustion","US Toxic Substances Control Act (TSCA) - Inventory","US TSCA Section 8 (a) Inventory Update Rule (fUR) - Partial Exemptions"

LIMITED EVIDENCE
• Cumulative effects may result following exposure*.
* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

• Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
A list of reference resources used to assist the committee may be found at:
www.chemwatch.net/references.
• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.