sc-217572 The Power to Owntie Hazard Alert Code Key: **EXTREME** HIGH MODERATE LOW ## Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION ### **PRODUCT NAME** Acid Green 25 ## STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. ## **NFPA** ## **SUPPLIER** Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 ### **PRODUCT USE** ■ Acid dyes, which are anionic, are used in the textile industry for dyeing of all natural fibres, e.g. wool, cotton, silk and synthetics, e.g. polyesters, acrylic and rayon. To a less extent they are used in a variety of application fields such as in paints, inks, plastics and leather. ## **SYNONYMS** C28-H20-N2-O8-S2.2Na, "C.I. 61570", CI.61570, "2, 2' -(1, 4-anthroquinonylenediimino)bis(5-methylbenzenesulfonic acid)", "disodium salt", "2, 2' -(1, 4-anthroquinonylenediimino)bis(5-methylbenzenesulfonic acid)", "disodium salt", "benzenesulfonic acid, 2, 2' -(1, 4-anthroquinonylenediimino)bis(5-methyl-, ", "disodium salt", "benzenesulfonic acid, 2, 2' -(1, 4-anthroquinonylenediimino)bis(5-methyl-, ", "disodium salt", "CI Acid Green", "Alizarin Cyanin Green G" ## **Section 2 - HAZARDS IDENTIFICATION** ### **CANADIAN WHMIS SYMBOLS** ### **EMERGENCY OVERVIEW** ## sc-217572 The Power to Owntie Hazard Alert Code Key: EXTREME HIGH MODERATE LOW #### **RISK** Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. ## POTENTIAL HEALTH EFFECTS ### **ACUTE HEALTH EFFECTS** ### **SWALLOWED** ■ The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern. #### EYE ■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals. #### SKIN - The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. - Open cuts, abraded or irritated skin should not be exposed to this material. - Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. ### **INHALED** - The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. - Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. - Not normally a hazard due to non-volatile nature of product. ### **CHRONIC HEALTH EFFECTS** ■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. NTP studies of nitro- and amino-anthraquinones, have demonstrated that each compound tested has some activity as a mutagen. Most NTP studies of nitro- and amino-anthraquinones, have demonstrated that each compound tested has some activity as a mutagen. Most compounds of this class that have been the subjects of two-year studies have also been found to be carcinogenic in one or more species. Sites of tumor development include the urinary bladder in rats and the liver of both rats and mice. Some anthraquinone (also known as anthracenedione) dyes are carcinogenic while others are positive allergens which cause hypersensitivity responses in unsensitised humans or cause or cause immunotoxic responses. Some of these dyes cause dermatitis whilst others produce slight teratogenic effects when administered intraperitoneally to pregnant mice. Information on the neurotoxic effects and metabolism on most members of this class of dyes is missing. Anthraquinones are classified with a large number of other quinone molecules that can be derived from aromatic molecules such as benzene, naphthalene, and anthracene. Reactive oxygen species generated by metabolism of a variety of quinones may be associated with DNA damage or activation of signaling pathways involved in initiation, promotion, and progression of carcinogenesis. A high percentage (36/80) of phenolic anthraquinones have been reported to be mutagenic in Salmonella. Quinone molecules can be reduced to a relatively stable hydroquinone, which usually is not associated with oxidative stress, or they may be reduced in a one-electron reduction to semiquinone free radicals that give rise to superoxide anions, hydrogen peroxide, and other reactive oxygen species Quinones may be produced from benzene, polycyclic aromatic hydrocarbons, estrogens, and catecholamines and give rise to reactive oxygen species that can damage DNA and other cellular macromolecules and activate signaling pathways. These molecular events may be associated with the initiation, promotion, and progression of carcinogenesis. ### Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS ## sc-217572 The Power to Questio | Hazard Alert Code Ke | ey: | EXTREME | HIGH | MODERATE | LOW | |----------------------|-----|---------|---------------------|-----------|------| | HAZARD RATINGS | 3 | | | | | | | | Min | Max | | | | Flammability: | 1 | | | | | | Toxicity: | 0 | | | | | | Body Contact: | 1 | | Min/Nil=0
Low=1 | | | | Reactivity: | 1 | | Moderate=2 | | | | Chronic: | 2 | | High=3
Extreme=4 | | | | NAME | | | | CAS RN | % | | C.I. Acid Green 25 | | | | 4403-90-1 | > 98 | ## **Section 4 - FIRST AID MEASURES** ## **SWALLOWED** - Immediately give a glass of water. - First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor. ### **EYE** - If this product comes in contact with eyes: - Wash out immediately with water. - If irritation continues, seek medical attention. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. ### SKIN - If skin or hair contact occurs: - Flush skin and hair with running water (and soap if available). - Seek medical attention in event of irritation. ## **INHALED** - If dust is inhaled, remove from contaminated area. - Encourage patient to blow nose to ensure clear passage of breathing. - If irritation or discomfort persists seek medical attention. ## **NOTES TO PHYSICIAN** ■ Treat symptomatically. | Section 5 - FIRE FIGHTING MEASURES | | | | | |------------------------------------|----------------|--|--|--| | Vapour Pressure (mmHG): | Not available | | | | | Upper Explosive Limit (%): | Not applicable | | | | | Specific Gravity (water=1): | 1.5 approx | | | | | Lower Explosive Limit (%): | Not applicable | | | | ## **EXTINGUISHING MEDIA** - Water spray or fog. - Foam. - Dry chemical powder. ## sc-217572 The Power to Ownto Hazard Alert Code Key: EXTREME HIGH MODERATE LOW - BCF (where regulations permit). - Carbon dioxide. ### **FIRE FIGHTING** - Alert Emergency Responders and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - Use water delivered as a fine spray to control fire and cool adjacent area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. ### GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS #### . - Combustible solid which burns but propagates flame with difficulty. - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited. - Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. - Build-up of electrostatic charge may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), other pyrolysis products typical of burning organic material. May emit poisonous fumes. ### FIRE INCOMPATIBILITY ■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result. ### PERSONAL PROTECTION Glasses: Safety Glasses. Chemical goggles. Gloves: Respirator: Particulate ## Section 6 - ACCIDENTAL RELEASE MEASURES ### MINOR SPILLS - Clean up all spills immediately. - Avoid breathing dust and contact with skin and eyes. - Wear protective clothing, gloves, safety glasses and dust respirator. - Use dry clean up procedures and avoid generating dust. - Sweep up, shovel up or vacuum up (consider explosion-proof machines designed to be grounded during storage and use). - Place spilled material in clean, dry, sealable, labeled container. ### **MAJOR SPILLS** - Moderate hazard. - CAUTION: Advise personnel in area. - Alert Emergency Responders and tell them location and nature of hazard. - Control personal contact by wearing protective clothing. - Prevent, by any means available, spillage from entering drains or water courses. - Recover product wherever possible. - IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other ## sc-217572 The Power to Questio Hazard Alert Code Key: EXTREME HIGH MODERATE LOW containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. - ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. ### ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm) AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure. AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape. AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death. ## Section 7 - HANDLING AND STORAGE ## PROCEDURE FOR HANDLING - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storing and handling recommendations. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - Do NOT cut, drill, grind or weld such containers. - In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. ### RECOMMENDED STORAGE METHODS - Polyethylene or polypropylene container. - Check all containers are clearly labelled and free from leaks. ## STORAGE REQUIREMENTS ### _ - Store in original containers. - Keep containers securely sealed. - Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. ## sc-217572 ## **Material Safety Data Sheet** LOW The Power to Oscotion Hazard Alert Code Key: EXTREME HIGH MODERATE - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storing and handling recommendations. ## SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS - X: Must not be stored together - O: May be stored together with specific preventions - +: May be stored together ## Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION ## **EXPOSURE CONTROLS** | Source | Material | TWA
ppm | TWA
mg/m³ | STEL
ppm | STEL
mg/m³ | Peak
ppm | Peak
mg/m³ | TWA
F/CC | Notes | |--|--|------------|--------------|-------------|---------------|-------------|---------------|-------------|-------| | US - Oregon Permissible
Exposure Limits (Z3) | C.I. Acid Green 25 (Inert or
Nuisance Dust: (d) Total dust) | | 10 | | | | | | * | | US OSHA Permissible Exposure
Levels (PELs) - Table Z3 | C.I. Acid Green 25 (Inert or
Nuisance Dust: (d) Respirable
fraction) | | 5 | | | | | | | | US OSHA Permissible Exposure
Levels (PELs) - Table Z3 | C.I. Acid Green 25 (Inert or
Nuisance Dust: (d) Total dust) | | 15 | | | | | | | | US - Hawaii Air Contaminant
Limits | C.I. Acid Green 25 (Particulates not other wise regulated - Total dust) | | 10 | | | | | | | | US - Hawaii Air Contaminant
Limits | C.I. Acid Green 25 (Particulates not other wise regulated - Respirable fraction) | | 5 | | | | | | | | US - Oregon Permissible
Exposure Limits (Z3) | C.I. Acid Green 25 (Inert or
Nuisance Dust: (d) Respirable
fraction) | | 5 | | | | | | * | | US - Tennessee Occupational
Exposure Limits - Limits For Air
Contaminants | C.I. Acid Green 25 (Particulates
not otherwise regulated
Respirable fraction) | | 5 | | | | | | | | US - Wyoming Toxic and
Hazardous Substances Table Z1
Limits for Air Contaminants | C.I. Acid Green 25 (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction) | | 5 | | | | | | | | US - Michigan Exposure Limits for Air Contaminants | C.I. Acid Green 25 (Particulates not otherwise regulated, Respirable dust) | | 5 | | | | | | | ## **MATERIAL DATA** C.I. ACID GREEN 25: ■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace. ## sc-217572 The Power to Questio Hazard Alert Code Key: EXTREME HIGH MODERATE LOW At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum. NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply. ## PERSONAL PROTECTION Consult your EHS staff for recommendations #### **EYE** #### _ . . - Safety glasses with side shields - Chemical goggles. - Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. #### HANDS/FFFT - Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended. - Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - polychloroprene - nitrile rubber - butyl rubber - fluorocaoutchouc - polyvinyl chloride Gloves should be examined for wear and/ or degradation constantly. ### **OTHER** - Overalls. - P.V.C. apron. - Barrier cream. - Skin cleansing cream. - Eye wash unit. - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). ## sc-217572 The Power to Oscotion Hazard Alert Code Key: EXTREME HIGH MODERATE LOW - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. ## **RESPIRATOR** | _ | | | | |-------------------|----------------------|----------------------|------------------------| | Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | | 10 x PEL | P1 | - | PAPR-P1 | | | Air-line* | - | - | | 50 x PEL | Air-line** | P2 | PAPR-P2 | | 100 x PEL | - | P3 | - | | | | Air-line* | - | | 100+ x PEL | - | Air-line** | PAPR-P3 | ^{* -} Negative pressure demand ** - Continuous flow Explanation of Respirator Codes: Class 1 low to medium absorption capacity filters. Class 2 medium absorption capacity filters. Class 3 high absorption capacity filters. PAPR Powered Air Purifying Respirator (positive pressure) cartridge. Type A for use against certain organic gases and vapors. Type AX for use against low boiling point organic compounds (less than 65°C). Type B for use against certain inorganic gases and other acid gases and vapors. Type E for use against sulfur dioxide and other acid gases and vapors. Type K for use against ammonia and organic ammonia derivatives Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used. ## **ENGINEERING CONTROLS** - Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. - Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace. - If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: - (a): particle dust respirators, if necessary, combined with an absorption cartridge; - (b): filter respirators with absorption cartridge or canister of the right type; - (c): fresh-air hoods or masks - Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant. Type of Contaminant: Air Speed: direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation 1-2.5 m/s (200-500 f/min.) into zone of rapid air motion) ## sc-217572 ## **Material Safety Data Sheet** The Power to Questio | | Hazard Alert Code Key: | EXTREME | HIGH | MC | DERAIE | LOW | | |------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------|-------------|-------------------|------------|-----|--| | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | | | | m/s (500-2000 f. | /min.) | | | | | Within each range the approp | oriate value depends on: | | | | | | | | Lower end of the range | | Upper | end of the range | | | | | | 1: Room air currents minima | l or favorable to capture | 1: Distu | irbing room air c | currents | | | | 2: Contaminants of low toxicity or of nuisance value only | | | nly 2: Cont | aminants of high | n toxicity | | | | | 3: Intermittent, low productio | n. | 3: High | production, hea | ivy use | | | | | 4: Large hood or large air ma | ass in motion | 4: Sma | ll hood-local cor | ntrol only | | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ## **Section 9 - PHYSICAL AND CHEMICAL PROPERTIES** ## **PHYSICAL PROPERTIES** Solid. Mixes with water. | MINES WILLI WALEI. | | | | |---------------------------|----------------|--------------------------------|----------------| | State | Divided solid | Molecular Weight | 622.60 | | Melting Range (°F) | 455- 460.4 | Viscosity | Not Applicable | | Boiling Range (°F) | Not available | Solubility in water (g/L) | Soluble | | Flash Point (°F) | Not available | pH (1% solution) | Not applicable | | Decomposition Temp (°F) | Not available | pH (as supplied) | Not applicable | | Autoignition Temp (°F) | Not available | Vapour Pressure (mmHG) | Not available | | Upper Explosive Limit (%) | Not applicable | Specific Gravity (water=1) | 1.5 approx | | Lower Explosive Limit (%) | Not applicable | Relative Vapor Density (air=1) | Not applicable | | Volatile Component (%vol) | Nil | Evaporation Rate | Not Applicable | ### **APPEARANCE** Dark blue green fine powder; soluble in water. ## **Section 10 - CHEMICAL STABILITY** ## **CONDITIONS CONTRIBUTING TO INSTABILITY** - ___ - Presence of incompatible materials. - Product is considered stable. - Hazardous polymerization will not occur. ## STORAGE INCOMPATIBILITY ■ Avoid reaction with oxidizing agents. For incompatible materials - refer to Section 7 - Handling and Storage. ## sc-217572 The Power to Questio Hazard Alert Code Key: EXTREME HIGH MODERATE LOW ## Section 11 - TOXICOLOGICAL INFORMATION C.I. Acid Green 25 ### **TOXICITY AND IRRITATION** ■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances. TOXICITY IRRITATION Oral (rat) LD50: >5000 mg/kg * Skin (rabbit): 500mg/24h Mild Eye (rabbit): 500mg/24h Mild * [BASF] ■ The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. ## Section 12 - ECOLOGICAL INFORMATION Refer to data for ingredients, which follows: C.I. ACID GREEN 25: - Harmful to aquatic organisms. - May cause long-term adverse effects in the aquatic environment. - Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. ■ Anthraquinone dyes may possibly be aerobically degraded in a manner analogous to anthraquinone or anthraquinone-2-sulfonate degradation. It has been demonstrated that three bacterial strains could grow with the anthraquinone dye Acid Blue 277:1 as a sole source of energy. Algae are generally susceptible to dyes, but the inhibitory effect is thought to be related to light inhibition at high dye concentrations, rather than a direct inhibitory effect of the dyes. This effect may account for up to 50% of the inhibition observed. Virtually all dyes from all chemically distinct groups are prone to fungal oxidation but there are large differences between fungal species with respect to their catalysing power and dye selectivity. A clear relationship between dye structure and fungal dye biodegradability has not been established. Fungal degradation of aromatic structures is a secondary metabolic event that starts when nutrients (C, N and S) become limiting. Therefore, while the enzymes are optimally expressed under starving conditions, supplementation of energy substrates and nutrients are necessary for propagation of the cultures. Under anaerobic conditions, the transformation of anthraquinone dyes is presumably limited to reduction of quinone to hydroquinone, a reaction that reverses once the molecule is again exposed to oxygen. Some anthraquinone dyes have been observed to be removed from the water phase by formation of an insoluble pigment. under anaerobic conditions. This is in line with the observation that electrochemical reduction of an anthraquinone dye increased its adsorptive properties. Many dyes are visible in water at concentrations as low as 1 mg/l. Textile-processing waste waters, typically with a dye content in the range 10- 200 mg /l are therefore usually highly coloured and discharge in open waters presents an aesthetic problem. As dyes are designed to be chemically and photolytically stable, they are highly persistent in natural environments. It is thus unlikely that they, in general, will give positive results in short-term tests for aerobic biodegradability. The release of dyes may therefore present an ecotoxic hazard and introduces the potential danger of bioaccumulation that may eventually affect man by transport through the food chain. ## ■ for acid dyes: Ecotoxicity: Analysis of over 200 acid dyes indicates that some monoacid and diacid dyes show moderate to high toxicity (that is acute values <100 mg/l and < 1 mg/l) to fish and aquatic organisms. Dyes with three of more acid groups show low toxicity (that is acute values >100 mg/l) towards fish and invertebrates. All acid dyes show moderate toxicity towards green algae. The effects on algae were not the result of direct toxicity but represented an indirect effect due to shading. Algae are generally susceptible to dyes, but the inhibitory effect is thought to be related to light inhibition at high dye concentrations, rather than a direct inhibitory effect of the dyes. This effect may account for up to 50% of the inhibition observed. Virtually all dyes from all chemically distinct groups are prone to fungal oxidation but there are large differences between fungal species with respect to their catalysing power and dye selectivity. A clear relationship between dye structure and fungal dye biodegradability has not been established. Fungal degradation of aromatic structures is a secondary metabolic event that starts when nutrients (C, N and S) become limiting. Therefore, while the enzymes are optimally expressed under starving conditions, supplementation of energy substrates ^{*} Supplier ## sc-217572 The Power to Question Hazard Alert Code Key: EXTREME HIGH MODERATE LOW and nutrients are necessary for propagation of the cultures Some chelated dyes, i.e., Al, Co, Cr, Fe, have shown moderate toxicity towards fish and daphnids ad the toxicity has not been explained by the residual free (unchelated) metal ion in the dye product. Environmental fate: Many dyes are visible in water at concentrations as low as 1 mg/l Textile-processing waste waters, typically with a dye content in the range 10- 200 mg /l are therefore usually highly coloured and discharge in open waters presents an aesthetic problem. As dyes are designed to be chemically and photolytically stable, they are highly persistent in natural environments. It is thus unlikely that they, in general, will give positive results in short-term tests for aerobic biodegradability. The release of dyes may therefore present an ecotoxic hazard and introduces the potential danger of bioaccumulation that may eventually affect man by transport through the food chain In general the ionic dyes will be almost completely or partly dissociated in an aqueous solution. Solubility in the range 100 mg/l to 80,000 mg/l has been reported for the ionic azo dyes. In addition, they would be expected to have a high to a moderate mobility in soil, sediment and particular matter, indicated by the low Koc values. However, due to their ionic nature, they adsorb as a result of ion-exchange processes. In addition, ionic compounds are not considered to be able to volatilise neither from moist nor dry surfaces, and the vapour pressures for these dyes are very low. - DO NOT discharge into sewer or waterways. - The material is classified as an ecotoxin* because it is NOT readily biodegradable, the log octanol/ water partition coefficient (log Kow) is greater than or equal to 3.5 and for which the Fish LC50 (96 hours) is less than or equal to 10 mg/l. Substances are considered to be readily biodegradable if the following levels of degradation are achieved in 28 days: - In tests based on dissolved organic carbon: 70% - In tests based on oxygen depletion or carbon dioxide generation: 60% of the theoretical maxima - These levels of biodegradation must be achieved within 10 days of the start of biodegradation, which point is taken as the time when 10% of the substance has been degraded. - * Classification of Substances as Ecotoxic (Dangerous to the Environment) Appendix 8, Table 1 Compiler's Guide for the Preparation of International Chemical Safety Cards: 1993 Commission of the European Communities. ■ NOTE: Estimated values have been used in the determination. Degradability: <10% photometry [Static test] Bacterial toxicity (Pseudonomas fluorescens): >5000 mg/l Fish toxicity LC0: Leuciscus idus 100-500 mg/l Fish LC50 (96 h): guppies 14.3 mg/l COD: 955 mg O2/g BOD30: <10 mg O2/g [BASF] ### **Ecotoxicity** Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility C.I. Acid Green 25 HIGH LOW LOW ## **Section 13 - DISPOSAL CONSIDERATIONS** ### **Disposal Instructions** All waste must be handled in accordance with local, state and federal regulations. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal. - Recycle wherever possible. - Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material) ## sc-217572 The Power to Questio Hazard Alert Code Key: EXTREME HIGH MODERATE LOW Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ### Section 14 - TRANSPORTATION INFORMATION NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG ### Section 15 - REGULATORY INFORMATION C.I. Acid Green 25 (CAS: 4403-90-1,122392-67-0,174846-33-4,60181-78-4,63309-98-8,86923-71-9) is found on the following regulatory lists: "Canada Domestic Substances List (DSL)", "US FDA CFSAN Color Additive Status List 2", "US FDA CFSAN Color Additive Status List 7", "US Toxic Substances Control Act (TSCA) - Inventory" ## **Section 16 - OTHER INFORMATION** ### LIMITED EVIDENCE - Cumulative effects may result following exposure*. - Limited evidence of a carcinogenic effect*. - * (limited evidence). ### Ingredients with multiple CAS Nos Ingredient Name CAS C.I. Acid Green 25 4403-90-1, 122392-67-0, 174846-33-4, 60181-78-4, 63309-98-8, 86923-71-9 Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL. - Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references. - The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. Issue Date: Dec-6-2008 Print Date:May-27-2010