Acid Violet 7

sc-217575

Material Safety Data Sheet

LOW Hazard Alert Code Key: **EXTREME** HIGH MODERATE

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Acid Violet 7

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

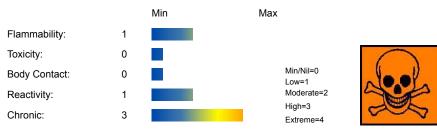
NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY:

ChemWatch


Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C20-H16-N4-O9-S2.2Na, "2, 7-naphthalenedisulfonic acid, 5-acetylamino)-3[[(4-", "(acetylamino)phenyl]azo]-4-hydroxy-, disodium salt", "C.I. 18055", "C.I. Acid Violet 7 disodium salt", "C.I. Food Red 11", "Acetyl Red 6B", "Acetyl Rose 5BL, 6BL", "Amido Naphthol Red 2B, 6B", "Azo Fuchsine 6B", "Ext D and C Red No. 1", "Hexacol Red 6B", "Fast Crimson 6BL"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

May cause CANCER.

May cause SENSITISATION by skin contact.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. <\p>.

EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result.

SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

There is ample evidence that this material can be regarded as being able to cause cancer in humans based on experiments and other information.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

<\p>.

Azo dyes as a class are a concern for their potential induction of mutagenicity and carcinogenicity

Reductive cleavage or degradation into component aromatic amines is one of the mechanisms leading to the genotoxicity of azo dyes. The aromatic amines that arise from the azo reduction and cleavage of azo dyes are thought to be activated as mutagens through their N-oxidation by cytochrome P450 isozymes. The N-hydroxylarylamines that are formed may be further glucuronated (activated) or acetylated (inactivated), which may influence their mutagenicity. Under acidic pH, they form reactive nitrenium ions that can alkylate bases in DNA, particularly the nucleophilic centres in guanine. This mechanism is thought to contribute to the carcinogenicity of many azo dyes, and as a result, azo dyes should be assessed for

toxicity and classified similarly to their component amines.

Many azo dyes (aromatic amines) have been found to be carcinogenic in laboratory animals, affecting the liver, urinary bladder and intestines. Specific toxicity effects in humans have not been established but some dyes are known to be mutagenic. Benzidine and its metabolic derivatives have been detected in the urine of workers exposed to Direct azo dyes. An epidemiological study of silk dyers and painters with multiple exposures to benzidine based and other dyes indicate a strong association with bladder cancer.

Not all azo dyes are genotoxic, only those dyes that contain either phenylenediamine or benzidine in the molecule would become mutagenic. Therefore, phenylenediamine and benzidine are the major mutagenic moieties of carcinogenic azo dyes. Many functional groups (i.e. NO2, CH3 and NH2) within the molecules of these amines affected their genotoxicities. Many aromatic amines are carcinogenic and/or mutagenic. This appears to involve bioactivation by various organs and/ or bacterial intervention

The simplest azo dyes, which raise concern, have an exocyclic amino-group that is the key to any carcinogenicity for it is this group which undergoes biochemical N-oxidation and further reaction to reactive electrophiles. The DNA adducts formed by covalent binding through activated nitrogen have been identified. However not all azo compounds possess this activity and delicate alterations to structure vary the potential of carcinogenicity / acid, reduces or eliminates the effect. Complex azo dyes consisting of more than one azo (N=N) linkage may be metabolised to produce complexed carcinogenic aromatic amines such as benzidine.

The carcinogenic aromatic amines are generally recognized to be bioactivated in two steps: N-hydroxylation catalyzed by cytochrome P450 enzymes to give N-hydroxyarylamines and subsequent acetyl-CoA-dependent o-acetylation. The N-acetoxy esters formed by acetylation of hydroxylamines are reactive electrophiles which give rise to covalent DNA-adduct probably via the loss of an active anion, which yields a nitrenium ion

In the past, azo colorants based on benzidine, 3,3'-dichlorobenzidine, 3,3'-dimethylbenzidine (o-tolidine), and 3,3'-dimethoxybenzidine (o-dianisidine) have been synthesized in large amounts and numbers. Studies in exposed workers have demonstrated that the azoreduction of benzidine-based dyes occurs in man. The metabolic conversion of benzidine-, 3,3'-dimethylbenzidine- and 3,3'-dimethoxybenzidine-based

dyes to their (carcinogenic) amine precursors in vivo is a general phenomenon that must be considered for each member of this class of chemicals

Azo dyes containing phenylenediamine are mutagenic in certain assays most likely due to the formation of oxidized p-phenylenediamine. p-Phenylenediamine are oxidised by the liver microsomal enzymes (S9). Pure p-phenylenediamine is non-mutagenic but becomes mutagenic after it is oxidized. Modification of the moieties that can be metabolized to p-phenylenediamine by sulfonation, carboxylation or copper complexation eliminated the mutagenic responses.

Bioavailability of azo dyes also determines whether they are to be metabolically converted to carcinogens. As a majority of azo pigments are based on 3,3'-dichlorobenzidine, much of the available experimental data are focused on this group. Long-term animal carcinogenicity studies performed with pigments based on 3,3'-dichlorobenzidine did not show a carcinogenic effect. Hence, it is very unlikely that occupational exposure to insoluble azo pigments would be associated with a substantial risk of (bladder) cancer in man. According to current EU regulations, azo dyes based on benzidine, 3,3'-dimethoxybenzidine and 3,3'-dimethylbenzidine have been classified as carcinogens of category 2 as "substances which should be regarded as if they are carcinogenic to man" This is not the case for 3,3'-dichlorobenzidine-based azo pigments.

It is also postulated that some of the aromatic amines metabolically produced from azo dyes may be responsible for the induction of autoimmune diseases such as lupus. This is probably due to the fact that lupus inducing drugs are amines in nature. They also have the similar metabolic activation pathways as the human bladder procarcinogens. The only difference between lupus inducing drugs and procarcinogens is that carcinogens interact with DNA to form covalent adducts which produce mutations, while lupus inducing drugs interact with DNA to provoke the immunoresponses.

Azo dyes are widely used in industry. A large amount of these dyes are discharged into streams and rivers, and they are considered as an environmental pollutant. Some of these compounds may accumulate into food chains and eventually reach the human body through ingestion. Intestinal microbiota and to a lesser extent, the liver enzymes, are responsible for the cleavage of azo dyes into aromatic amines. Some of human endogenous bacteria that contaminate bladder can metabolically activate aromatic amines that are produced from azo dyes (procarcinogens). The addition of the nitro-group to these aromatic amines would convert them into direct mutagens.

These findings may also explain, partly, the close relationships between chronic infection and cancer development.

Skin bacteria are thought to be responsible for cleavage of certain azo dyes to produce carcinogens; of importance are dye-stuffs found in cosmetics, hair dyes, textiles and tattoo inks.

Several in vitro and in vivo studies suggest that certain azo dyes may be reductively cleaved when applied to the skin also under aerobic conditions. Results obtained with the various azo dyes suggest that reductive cleavage to aromatic amines has to be considered a significant degradation pathway. It is generally thought that about 30% of the dye may be cleaved in this manner.

From the available literature, on this chemical class of azo dyes, it can be deduced that all azo dyes which are split into carcinogenic arylamines are possible carcinogens.

Both water-soluble and lipophilic azo dyes of this class have been shown experimentally to undergo cleavage to potential carcinogens.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS			
NAME		CAS RN	%
C.I. Acid Violet 7		4321-69-1	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

· Immediately give a glass of water. · First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE

■ If this product comes in contact with eyes: · Wash out immediately with water. · If irritation continues, seek medical attention.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If dust is inhaled, remove from contaminated area. · Encourage patient to blow nose to ensure clear passage of breathing. · If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Periodic medical surveillance should be carried out on persons in occupations exposed to the manufacture or bulk handling of the product and this should include hepatic function tests and urinalysis examination. [ILO Encyclopaedia].

Section 5 - FIRE FIGHTING MEASURES			
Vapour Pressure (mmHG):	Negligible		
Upper Explosive Limit (%):	Not available.		
Specific Gravity (water=1):	Not available		
Lower Explosive Limit (%):	Not available		

EXTINGUISHING MEDIA

- · Foam.
- \cdot Dry chemical powder.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Clean up waste regularly and abnormal spills immediately.
- · Avoid breathing dust and contact with skin and eyes.
- · Wear protective clothing, gloves, safety glasses and dust respirator.
- · Use dry clean up procedures and avoid generating dust.
- · Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- · Dampen with water to prevent dusting before sweeping.
- · Place in suitable containers for disposal.

MAJOR SPILLS

- · Clear area of personnel and move upwind.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- $\cdot \ \mathsf{Polyethylene} \ \mathsf{or} \ \mathsf{polypropylene} \ \mathsf{container}.$
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA mg/m³	Notes
US - Oregon Permissible Exposure Limits (Z-3)	C.I. Acid Violet 7 (Inert or Nuisance Dust: Total dust)	10	(d)
US OSHA Permissible Exposure Levels (PELs) - Table Z3	C.I. Acid Violet 7 (Inert or Nuisance Dust: (d) Respirable fraction)	5	
US OSHA Permissible Exposure Levels (PELs) - Table Z3	C.I. Acid Violet 7 (Inert or Nuisance Dust: (d) Total dust)	15	

US - Hawaii Air Contaminant Limits	C.I. Acid Violet 7 (Particulates not other wise regulated - Total dust)	10	
US - Hawaii Air Contaminant Limits	C.I. Acid Violet 7 (Particulates not other wise regulated - Respirable fraction)	5	
US - Oregon Permissible Exposure Limits (Z-3)	C.I. Acid Violet 7 (Inert or Nuisance Dust: Respirable fraction)	5	(d)
US ACGIH Threshold Limit Values (TLV)	C.I. Acid Violet 7 (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book
US - California Permissible Exposure Limits for Chemical Contaminants	C.I. Acid Violet 7 (Particulates not otherwise regulated Respirable fraction)	5	(n)
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	C.I. Acid Violet 7 (Particulates not otherwise regulated Respirable fraction)	5	
US - Michigan Exposure Limits for Air Contaminants	C.I. Acid Violet 7 (Particulates not otherwise regulated, Respirable dust)	5	
Canada - Prince Edward Island Occupational Exposure Limits	C.I. Acid Violet 7 (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants ENDOELTABLE	C.I. Acid Violet 7 (Particulates not otherwise regulated (PNOR)(f)-Respirable fraction)	5	

PERSONAL PROTECTION

RESPIRATOR

Particulate

Consult your EHS staff for recommendations

EYE

- · Safety glasses with side shields.
- · Chemical goggles.

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- · nitrile rubber
- · butyl rubber
- · fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area.
- Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted.

- · Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.
- Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- \cdot Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- · Overalls.
- · P.V.C. apron.
- · Barrier cream
- · Skin cleansing cream.
- · Eye wash unit.

ENGINEERING CONTROLS

- · Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- · Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- · Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- · Open-vessel systems are prohibited.
- · Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to the operation.
- · Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- · Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- · Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- · Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 150 feet/ min. with a minimum of 125 feet/ min. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

Bood flot flux with water.			
State	Divided solid	Molecular Weight	566.48
Melting Range (°F)	Not available	Viscosity	Not available
Boiling Range (°F)	Not available	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	Not available	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	>1
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Very dark-red powder; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.

STORAGE INCOMPATIBILITY

- · Toxic gases are formed by mixing azo and azido compounds with acids, aldehydes, amides, carbamates, cyanides, inorganic fluorides, halogenated organics, isocyanates, ketones, metals, nitrides, peroxides, phenols, epoxides, acyl halides, and strong oxidizing or reducing agents.
- · Flammable gases are formed by mixing azo and azido compounds with alkali metals. Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

C.I. ACID VIOLET 7

TOXICITY AND IRRITATION

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type.
- · NOTE: Detailed analysis of the molecular structure, by various Authorities/ Agencies and in other cases by Chemwatch, indicates that the azo colourant can split off carcinogenic arylamines.

The azo linkage is considered the most labile portion of an azo dye. The linkage easily undergoes enzymatic breakdown, but thermal or photochemical breakdown may also take place. The breakdown results in cleavage of the molecule and in release of the component amines. Water solubility determines the ultimate degradation pathways of the dyes. For example the azo linkage of many azo pigments is, due to very low solubility in water, not available for intracellular enzymatic breakdown but may be susceptible to endogenous micro-organisms found in the bladder or in the gut.

After cleavage of the azo linkage by bacteria, the component aromatic amines are absorbed in the intestine and excreted in the urine. Twenty-two of the component amines are recognised as potential human carcinogens, and/or several of them have shown carcinogenic potential on experimental animals. Sulfonation of the dye reduces the toxicity by enhancement of the excretion.

The component amines which may be released from azo dyes are mostly aromatic amines (compounds where an amine group or aminegenerating group(s) are connected to an aryl moiety). In general, aromatic amines known as carcinogenic may be grouped into five groups

- · Anilines, e.g. o-toluidine.
- · Extended anilines, e.g. benzidine.
- · Fused ring amines, e.g. 2-naphthylamine.
- · Aminoazo and other azo compounds, e.g. 4-(phenylazo)aniline.
- · Heterocyclic amines.

The aromatic amines containing moieties of anilines, extended anilines and fused ring amines are components of the majority of the industrially important azo dyes.

Reductive fission of the azo group, either by intestinal bacteria or by azo reductases of the liver and extra-hepatic tissues can cause benzidine-based aromatic amines to be released. Such breakdown products have been detected in animal experiments as well as in man (urine). Mutagenicity, which has been observed with numerous azo colourants in in vitro test systems, and the carcinogenicity in animal experiments are attributed to the release of amines and their subsequent metabolic activation. There are now epidemiological indications that occupational exposure to benzidene-based azo colourants can increase the incidence of bladder carcinoma.

The acute toxicity of azo dyes is low.. However, potential health effects are recognised.

Despite a very broad field of application and exposure, sensitising properties of azo dyes have been identified in relatively few reports. Red azoic dyes have been linked to allergic contact dermatitis in heavily exposed workers. Furthermore, textiles coloured with disperse azo dyes have caused allergic dermatitis in a few cases.

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility C.I. Acid Violet 7 HIGH LOW MED

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- · Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

Section 15 - REGULATORY INFORMATION

REGULATIONS

C.I. Acid Violet 7 (CAS: 4321-69-1) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)","US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jan-10-2010 Print Date: Oct-16-2010