1,1,3,3,5,5-Hexamethyltrisiloxane

sc-222764

Material Safety Data Sheet

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

1,1,3,3,5,5-Hexamethyltrisiloxane

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY: ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C6-H20-O2-Si3, "trisiloxane, 1, 3, 3, 5, 5-hexamethyl-", bis(dimethylsiloxy)dimethylsilane, "1, 3, 3, 5, 5-hexamethylpentanetrisiloxane", dimethylsilylenebis(oxy)bis(dimethylsilane)

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

Max Flammability: 3 Toxicity: 2 Min/Nil=0 **Body Contact:** 2 Low=1 Moderate=2 Reactivity: 1 High=3 Chronic: Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK

Harmful if swallowed.

Irritating to eyes, respiratory system and skin.

Highly flammable.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Silicone fluids do not have a high acute toxicity.
- They may have a laxative effect and produce central nervous system depression.
- High molecular weight material; on single acute exposure would be expected to pass through gastrointestinal tract with little change / absorption.

Occasionally accumulation of the solid material within the alimentary tract may result in formation of a bezoar (concretion), producing discomfort.

EYE

- This material can cause eye irritation and damage in some persons.
- Eye exposure to silicone fluids causes temporary irritation of the conjunctiva.

Injection into the specific structures of the eye, however, causes corneal scarring, permanent eye damage, allergic reactions and cataract, and may lead to blindness.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Low molecular weight silicone fluids may exhibit solvent action andmay produce skin irritation.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material can cause respiratory irritation in some persons.

The body's response to such irritation can cause further lung damage.

■ Vapors of silicones are generally fairly well tolerated, however very high concentrations can cause death within minutes due to respiratory failure.

At high temperatures, the fumes and oxidation products can be irritating and toxic and can cause depression leading to death in very high doses.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
1,1,3,3,5,5-hexamethyltrisiloxane	1189-93-1	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

· IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. · Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

EYE

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN

■ for poisons (where specific treatment regime is absent):

----BASIC TREATMENT

- · Establish a patent airway with suction where necessary.
- · Watch for signs of respiratory insufficiency and assist ventilation as necessary.

Section 5 - FIRE FIGHTING MEASURES				
Vapour Pressure (mmHG):	Not Available			
Upper Explosive Limit (%):	Not Available			
Specific Gravity (water=1):	0.822			
Lower Explosive Limit (%):	Not Available			

EXTINGUISHING MEDIA

- · Foam.
- · Dry chemical powder.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · May be violently or explosively reactive.

When any large container (including road and rail tankers) is involved in a fire,

consider evacuation by 500 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Liquid and vapor are highly flammable.
- · Severe fire hazard when exposed to heat, flame and/or oxidizers.

Combustion products include: carbon dioxide (CO2), silicon dioxide (SiO2), other pyrolysis products typical of burning organic material. CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Type A Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.

MAJOR SPILLS

- · Silicone fluids, even in small quantities, may present a slip hazard.
- · It may be necessary to rope off area and place warning signs around perimeter.
- · Clean up area from spill, with suitable absorbant, as soon as practically possible.
- Final cleaning may require use of steam, solvents or detergents.
- · Clear area of personnel and move upwind.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- \cdot Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- DO NOT allow clothing wet with material to stay in contact with skin.
- · Avoid all personal contact, including inhalation.

· Wear protective clothing when risk of exposure occurs.

RECOMMENDED STORAGE METHODS

- Packing as supplied by manufacturer. Plastic containers may only be used if approved for flammable liquid.
- · For low viscosity materials (i): Drums and jerricans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- · For materials with a viscosity of at least 2680 cSt. (23 deg. C).

STORAGE REQUIREMENTS

- · Store in original containers in approved flame-proof area.
- · No smoking, naked lights, heat or ignition sources.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records
• 1,1,3,3,5,5-hexamethyltrisiloxane: CAS:1189-93-1

PERSONAL PROTECTION

RESPIRATOR

· type a filter of sufficient capacity.

EYE

- · Safety glasses with side shields.
- · Chemical goggles.

HANDS/FEET

■ Wear chemical protective gloves, eg. PVC.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact.
- chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- · Overalls.
- · PVC Apron.
- \cdot Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- · For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets), non sparking safety footwear.

ENGINEERING CONTROLS

■ For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

State	LIQUID	Molecular Weight	208-48
Melting Range (°F)	Not Available	Viscosity	Not Available

Boiling Range (°F)	262	Solubility in water (g/L)	Partly Miscible
Flash Point (°F)	68	pH (1% solution)	Not Applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not Applicable
Autoignition Temp (°F)	Not Available	Vapour Pressure (mmHG)	Not Available
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	0.822
Lower Explosive Limit (%)	Not Available	Relative Vapor Density (air=1)	Not Available
Volatile Component (%vol)	Not Available	Evaporation Rate	Not Available

APPEARANCE

Light-yellow clear liquid; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Silicone fluids are stable under normal storage conditions.
- · Hazardous polymerisation will not occur.
- · At temperatures > 150 C, silicones can slowly react with the oxygen in air.
- When heated > 300 C, silicones can slowly depolymerise to volatile siloxanes whether or not air is present.
- Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY

■ Traces of benzene, a carcinogen, may form when silicones are heated in air above 230 degrees C. Concentrated acids and bases cause degradation of polymer. Boiling water may soften and weaken material.

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

1,1,3,3,5,5-hexamethyltrisiloxane

TOXICITY AND IRRITATION

1,1,3,3,5,5-HEXAMETHYLTRISILOXANE:

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

For siloxanes:

Effects which based on the reviewed literature do not seem to be problematic are acute toxicity, irritant effects, sensitization and genotoxicity.

Some studies indicate that some of the siloxanes may have endocrine disrupting properties, and reproductive effects have caused concern about the possible effects of the siloxanes on humans and the environment.

Only few siloxanes are described in the literature with regard to health effects, and it is therefore not possible to make broad conclusions and comparisons of the toxicity related to short-chained linear and cyclic siloxanes based on the present evaluation. Data are primarily found on the cyclic siloxanes D4 (octamethylcyclotetrasiloxane)

and D5 (decamethylcyclopentasiloxane) and the short-linear HMDS (hexamethyldisiloxane).

These three siloxanes have a relatively low order of acute toxicity by oral, dermal and inhalatory routes and do not require classification for this effect.

They are not found to be irritating to skin or eyes and are also not found sensitizing by skin contact. Data on respiratory sensitization have not been identified.

Subacute and subchronic toxicity studies show that the liver is the main target organ for D4 which also induces liver cell enzymes. This enzyme induction contributes to the elimination of the substance from the tissues. Primary target organ for D5 exposure by inhalation is the lung. D5 has an enzyme induction profile similar to that of D4. Subacute and subchronic inhalation of HMDS affect in particular the lungs and kidneys in rats.

None of the investigated siloxanes show any signs of genotoxic effects in vitro or in vivo. Preliminary results indicate that D5 has a potential carcinogenic effect.

D4 is considered to impair fertility in rats by inhalation and is classified as a substance toxic to reproduction in category 3 with the risk

phrase R62 ('Possible risk of impaired fertility').

The results of a study to screen for oestrogen activity indicate that D4 has very weak oestrogenic and antioestrogenic activity and is a partial agonist (enhances the effect of the estrogen). It is not uncommon for compounds that are weakly

oestrogenic to also have antioestrogenic properties. Comparison of the oestrogenic potency of D4 relative to ethinyloestradiol (steroid hormone) indicates that D4 is 585,000 times less potent than ethinyloestradiol in the rat stain Sprague- Dawley and 3.7 million times less potent than ethinyloestradiol in the Fisher-344 rat strain. Because of the lack of effects on other endpoints designated to assess oestrogenicity, the oestrogenicity as mode of action for the D4 reproductive effects has been questioned. An indirect mode of action causing a delay of the LH (luteinising hormone) surge necessary for optimal timing of ovulation has been suggested as the mechanism. Based on the reviewed information, the critical effects of the siloxanes are impaired fertility (D4) and potential carcinogenic effects (uterine tumours in females). Furthermore there seem to be some effects on various organs following

repeated exposures, the liver (D4), kidney (HMDS) and lung (D5 and HMDS) being the target organs.

A possible oestrogenic effect contributing to the reproductive toxicity of D4 is debated. There seems however to be some indication that this toxicity may be caused by another mechanism than oestrogen activity.

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

This material and its container must be disposed of as hazardous waste.

Ecotoxicity

Persistence: Persistence: Air Bioaccumulation Mobility

Water/Soil

1,1,3,3,5,5hexamethyltrisiloxane HIGH No Data Available LOW MED

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Ignitability characteristic: use EPA hazardous waste number D001 (waste code I)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols: None Hazard class or Division: 3 Identification Numbers: UN1993 PG: II Label Codes: 3 Special provisions: IB2, T7,

TP1, TP8, TP28

Packaging: Exceptions: 150 Packaging: Non- bulk: 202 Packaging: Exceptions: 150 Quantity limitations: 5 L

Passenger aircraft/rail:

Quantity Limitations: Cargo 60 L Vessel stowage: Location: B

aircraft only:

Vessel stowage: Other: None

Hazardous materials descriptions and proper shipping names:

Flammable liquids, n.o.s.

Air Transport IATA:

UN/ID Number: 1993 Packing Group: II

Special provisions: A3

Cargo Only

Packing Instructions: 60 L Maximum Qty/Pack: 364 Passenger and Cargo Passenger and Cargo Packing Instructions: 5 L Maximum Qty/Pack: 353

Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity

Packing Instructions: 1 L Maximum Qtv/Pack: Y341

Shipping Name: FLAMMABLE LIQUID, N.O.S. *(CONTAINS 1,1,3,3,

5,5-HEXAMETHYLTRISILOXANE)

Maritime Transport IMDG:

IMDG Class: 3 IMDG Subrisk: None UN Number: 1993 Packing Group: II

EMS Number: F-E, S-E Special provisions: 274

Limited Quantities: 1 L

Shipping Name: FLAMMABLE LIQUID, N.O.S.(contains 1,1,3,3,5,5-hexamethyltrisiloxane)

Section 15 - REGULATORY INFORMATION

1,1,3,3,5,5-hexamethyltrisiloxane (CAS: 1189-93-1) is found on the following regulatory lists;

"Canada Non-Domestic Substances List (NDSL)", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

■ Cumulative effects may result following exposure*.

* (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance CAS Suggested codes 1, 1, 3, 3, 5, 5- hexamethyltrisiloxane 1189- 93- 1 Xn; R22

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Mar-23-2011 Print Date: May-31-2011