
Diethyl dithiophosphate ammonium salt

PRODUCT USE

Reagent.

SYNONYMS

C4-H11-O2-P-S2.NH4, C4-H11-O2-P-S2.NH4, (C2H5O)2P(S)SNH4, "ammonium diethyl dithiophosphate", "ammonium diethyldithio phosphate", "phosphorodithioic acid, O, O-diethyl ester, ammonium salt", "phosphorodithioic acid, O, O-diethyl ester, ammonium salt", "diethyldithiophosphoric acid ammonium salt", "ammonia O, O-diethyl diethiophosphate", "ammonia O, O-diethyl diethiophosphate", "ammonia O, O-diethyl diethiophosphate", "ammonia ethyl phosphorodithioate", NF-133

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK Harmful by inhalation, in contact with skin and if swallowed.

2255 (1-800-CHEMCALL) or call +613 9573 3112

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

■ Thiophosphates (phosphothioate esters) do not generally produce the same degree of cholinesterase inhibition associated with other organophosphates. They may however react with a range of compounds to produce such inhibitors. Ingestion of large quantities may produce severe abdominal pains, thirst, acidaemia, difficult breathing, convulsions, collapse, shock and even death. Organophosphates may suppress the immune system in some animal species.

• Large doses of ammonia or injected ammonium salts may produce diarrhea and may be sufficiently absorbed to produce increased production of urine and systemic poisoning. Symptoms include weakening of facial muscle, tremor, anxiety, reduced muscle and limb control.

EYE

• There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain. There may be damage to the cornea. Unless treatment is prompt and adequate there may be permanent loss of vision. Conjunctivitis can occur following repeated exposure. **SKIN**

Skin contact with the material may be harmful; systemic effects may resultfollowing absorption.

• The material is not thought to be a skin irritant (as classified using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

Open cuts, abraded or irritated skin should not be exposed to this material.

• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

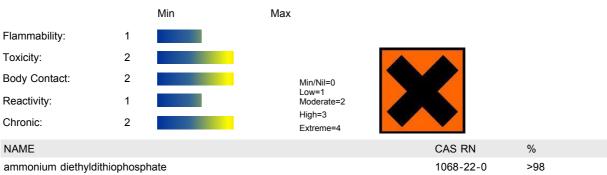
INHALED

■ Inhalation of dusts, generated by the material, during the course of normalhandling, may be harmful.

■ The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

Prolonged exposure may cause headache, nausea and ultimately loss of consciousness.


CHRONIC HEALTH EFFECTS

■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Alkyl thiophosphates may degrade, under certain circumstances, to produce hydrogen sulfide and alkyl mercaptans.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed:
- · Contact a Poisons Information Center or a doctor at once.
- If swallowed, activated charcoal may be advised.
- · Give atropine if instructed.
- REFER FOR MEDICAL ATTENTION WITHOUT DELAY.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided.
- · Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eyes:
- · Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If product comes in contact with skin:
- · Contact a Poisons Information Center or a doctor.
- DO NOT allow clothing wet with product to remain in contact with skin, strip all contaminated clothing including boots.
- Quickly wash affected areas vigorously with soap and water.
- DO NOT give anything by mouth to a patient showing signs of narcosis, i.e. losing consciousness.

- · Give atropine if instructed.
- DO NOT delay, get to a doctor or hospital quickly.

INHALED

- •
- If spray mist, vapor are inhaled, remove from contaminated area.
- Contact a Poisons Information Center or a doctor at once.
- Lay patient down in a clean area and strip any clothing wet with spray.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- DO NOT give anything by mouth to a patient showing signs of narcosis, i.e. losing consciousness.
- Give atropine if instructed.
- Get to doctor or hospital quickly.

NOTES TO PHYSICIAN

■ for poisons (where specific treatment regime is absent):

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- Monitor and treat, where necessary, for pulmonary edema .
- · Monitor and treat, where necessary, for shock.
- Anticipate seizures
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- · Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary edema.
- Hypotension with signs of hypovolemia requires the cautious administration of fluids. Fluid overload might create complications.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994.

Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not available
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%):	Not available

EXTINGUISHING MEDIA

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- · Carbon dioxide.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- · Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- · Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- - Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during

transport.

- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), phosphorus oxides (POx), sulfur oxides (SOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

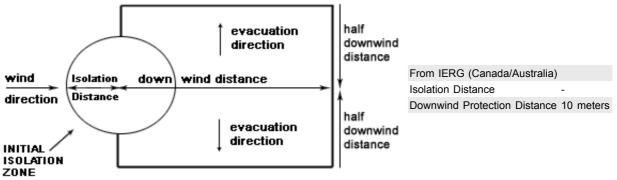
Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result

PERSONAL PROTECTION

Glasses Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS


- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.
- · Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

PROTECTIVE ACTION ZONE

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects. 3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose

a small persons without appropriate protection to life-threatening concentrations of the material. 4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder 5 Guide 171 is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could

experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape. AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could event and the structure is back to effect a concentration of the structure is a substance above which it is predicted that the general population, including susceptible individuals, could

experience life-threatening health effects or death.

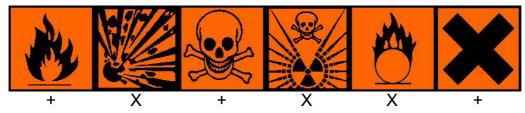
Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- · Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- · Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- · Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- · Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.


RECOMMENDED STORAGE METHODS

- Glass container.
- Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA mg/m³			TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z3)	ammonium diethyldithiophosphate (Inert or Nuisance Dust: (d) Total dust)	10				*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	ammonium diethyldithiophosphate (Inert or Nuisance Dust: (d) Respirable fraction)	5				
US OSHA Permissible Exposure Levels (PELs) - Table Z3	ammonium diethyldithiophosphate (Inert or Nuisance Dust: (d) Total dust)	15				
US - Hawaii Air Contaminant Limits	ammonium diethyldithiophosphate (Particulates not other wise regulated - Total dust)	10				
US - Hawaii Air Contaminant Limits	ammonium diethyldithiophosphate (Particulates not other wise regulated - Respirable fraction)	5				

US - Oregon Permissible Exposure Limits (Z3)	ammonium diethyldithiophosphate (Inert or Nuisance Dust: (d) Respirable fraction)	5	*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	ammonium diethyldithiophosphate (Particulates not otherwise regulated Respirable fraction)	5	
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	ammonium diethyldithiophosphate (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5	
US - Michigan Exposure Limits for Air Contaminants	ammonium diethyldithiophosphate (Particulates not otherwise regulated, Respirable dust)	5	

MATERIAL DATA

AMMONIUM DIETHYLDITHIOPHOSPHATE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- · cause increased susceptibility to other irritants and infectious agents
- · lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations **EYE**

_ . _

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

Wear chemical protective gloves, eg. PVC.

Wear safety footwear or safety gumboots, eg. Rubber.

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- .
- Overalls.
- P.V.C. apron.
- Barrier cream.
- · Skin cleansing cream.
- Eye wash unit.

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be . considered. Such protection might consist of:

(a): particle dust respirators, if necessary, combined with an absorption cartridge;

(b): filter respirators with absorption cartridge or canister of the right type;

(c): fresh-air hoods or masks

Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.

• Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Mixes with water.			
State	Divided solid	Molecular Weight	203.26
Melting Range (°F)	327.2-330.8	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not available	pH (1% solution)	Not available
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not Applicable

APPEARANCE

White crystalline solid with unpleasant odour; mixes with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Alkyl esters of thiophosphates are often temperature sensitive and decompose if overheated. Thermal decomposition products include highly toxic and odiferous hydrogen sulfide and extremely odorous alkyl mercaptans. Both species can be detected at extremely low concentrations and vapors may travel long distances.
- Low temperature storage may produce crystallization from solution.
- CARE: If heating to liquefy, use tepid water, Avoid temperatures in excess of 50 deg. C.
- Head-space of drums may contain hydrogen sulfide.
- Avoid oxidizing agents, acids, acid chlorides, acid anhydrides.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

ammonium diethyldithiophosphate

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY

Oral (rat) LD50: 7900 mg/kg

Skin (rabbit): 500 mg - Mild

IRRITATION

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

For dithiophosphate alkyl esters and their (zinc) salts:

Acute toxicity: Dithiophosphate alkyl esters consist of a phosphorodithioic acid structure with alkyl ester substituent groups. The alkyl groups are saturated hydrocarbon chains that vary in length and extent of branching. While corrosive to tissue the esters demonstrate a low concern for acute systemic toxicity. Data on acute mammalian toxicity of zinc dialkyldithiophosphates in highly refined lubricant base oil also indicate a low concern for acute toxicity. Commercial oil-based samples of the zinc dialkyldithiophosphate category have been tested for acute oral toxicity. The acute oral LD50 for these studies in rats ranged from 2000-3500 mg/kg. Clinical signs observed following treatment included diarrhea, lethargy, reduced food consumption, and staining about the nose and eye. Ptosis, piloerection, ataxia and salivation were occasionally observed. The incidence and severity of these symptoms were proportional to the dose. In many cases the effects were found to be reversible during observation week 2. Necropsy findings were few in number. Lung congestion, gastrointestinal irritation and a reduction in body fat were observed in some animals.

Acute dermal toxicity and irritation studies using the ester on experimental animals resulted in severe dermal irritation and corrosivity. There is minimal opportunity of human exposure to the chemicals in this category. Dithiophosphate alkyl esters exhibit extreme corrosive properties on skin.

Commercial oil-based samples of the zinc dialkyldithiophosphate category have been tested for acute dermal toxicity. The acute dermal LD50s for these studies in rabbits were greater than 2000 mg/kg (limit tests). No treatment-related mortality was observed at doses ranging from 2000-8000 mg/kg. Dermal application of the test materials to abraded skin for 24 hours typically produced moderate-to-severe erythema and edema, which in some cases persisted through the 14-day observation period. Clinical signs included varying degrees of reduced food consumption, weight loss, diarrhea, lethargy, ataxia, ptosis, motor incoordination and/or loss of righting reflex. There were no remarkable gross necropsy observations. Overall, the acute dermal LD50 for these substances were greater than 2000 mg/kg indicative of a relatively low order of lethal toxicity. Zinc dialkyldithiophosphates are high molecular weight components (average > 500 gm/mol), which generally accepted that the

molecular weight limit for passive transport across biological membranes. Thus, upon exposure it is unlikely that significant amounts of these components will be absorbed for systemic distribution. In addition, these materials have a low water solubility that further inhibits absorption and distribution in the mammalian system.

The negligible vapor pressure and high viscosity at ambient temperature indicates that these materials are unlikely to represent an inhalation exposure under conditions of use

Repeat dose toxicity: Data from several repeated-dose toxicity studies using commercial samples of zinc dialkyldithiophosphates in highly refined lubricant base oil has been reviewed. Repeated dermal exposure to experimental animals resulted in moderate-to-severe dermal irritation, behavioral distress, body weight loss and emaciation, reduction in Data from several repeated-dose toxicity studies using commercial samples of zinc hematological parameters and adverse effects on male reproductive organs. These effects were observed across several members of the category with carbon chain lengths ranging from C4-8. There was no evidence that the incremental increase in carbon chain length or molecular weight could be correlated with significant changes in toxicity parameters.

Oral administration caused significant gastric irritation and related gastrointestinal disturbances, signs of distress but with no evidence of adverse effects on male reproductive organs.

Reproductive toxicity: An epidemiological study on workers exposed to oil-based zinc dialkyldithiophosphates (range C4-8) in an additive manufacturing plant revealed no adverse effects on worker reproductive health. Review of the available information underscores the similarity of clinical and pathological findings in repeated-dose dermal toxicity studies with C4-10 zinc dialkyldithiophosphates, as well as the absence of reproduction and developmental toxicity and the lack of untoward findings in a human epidemiological investigation. Reproductive organ effects, following dermal application, have been observed in male rabbits; these are attributed to the stress associated with the severe dermal responses to the test material, rather than direct a systemic response to the test materials. Changes in male reproductive organs in the rabbit have been observed when other irritating substances are applied to the skin at dose levels that cause skin lesions. Thus, dermal irritation alone, or in combination with the accompanying weight loss and stress, is thought to play a role in the reproductive organ response to repeated cutaneous application of zinc dialkyldithiophosphates.

Mutagenicity: Findings indicate that commercial samples of zinc dialkyldithiophosphates in highly refined lubricant base oil have a small potential for inducing genetic toxicity. In vitro bacterial gene mutation assays, in vitro mammalian gene mutation assays, or in vivo chromosomal aberration assays have been conducted. Frequencies of reverse mutations in bacteria were not significantly changed after exposure to the zinc dialkyldithiophosphates. In vitro mutation studies in mammalian cells indicate that the zinc dialkyldithiophosphates do not consistently display mutagenic activity in the absence of metabolic activation, however, upon biotransformation, these materials showed mutagenic activity. The findings in bacterial and mammalian cells did not vary in proportion to the alkyl chain length or any other physicochemical parameter.

The results of the studies performed in the absence of hepatic microsome activation were inconsistent, but in general indicating that zinc dialkyldithiophosphates have mutagenic potential (3 studies negative, 3 studies positive in the absence of metabolic activation). However, the weight of evidence (2 studies positive, 1 study negative) indicates that metabolic activation of zinc dialkyldithiophosphates by induced hepatic microsomal enzymes results in a significant increase in the mutagenic potential of this class of chemical substances.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: AMMONIUM DIETHYLDITHIOPHOSPHATE:

For dithiophosphate alkyl esters and their (zinc) salts:

The physicochemical properties of dithiophosphate alkyl esters parallel their structural similarity. All members of this category are within a narrow molecular weight range (256-354 daltons) and are highly acidic. In addition, modeling data indicate they have similar melting and boiling points, low water solubility, low vapor pressure, and are lipophilic in nature.

Modeling data indicates that the vapor pressure of these substances range from 3.46 x 10-3 to 1.9 x 10-5 mm Hg at 25 C and generally follow a pattern based upon their molecular weight and the extent of branching of the alkyl side chain. Modeling data indicates that these substances have low water solubility and that the log of the octanol-water partition

coefficient (log Kow) of these substances range from 4.48-7.99. The low water solubility is consistent with the high lipophilic nature of these substances.

Members of the zinc dialkyldithiophosphate category, described here, contain alkyl chain lengths that range from C3-10, or tetrapropenylphenol (range = C10-15, C12 enriched). It is common for zinc dialkyldithiophosphates to contain mixed alkyl esters (e.g., C4, C5), although derivatives with single chain lengths (e.g., C8) are included in the category . As a result of this diversity in alkyl side chain length, the molecular weight distribution for the members of the category is broad, 578 to 1303 gm/mol. Due to the predominant influence of carbon chain length on molecular weight.

Vapour pressures for the zinc dialkyldithiophosphates are thought to be less than 0.5 mm Hg.

Unpublished data for a commercial zinc dialkyldithiophosphate with an alkyl group less than C8 indicates a water solubility of 1.6 mg/L. The zinc dialkyldithiophosphates are generally regarded to be poorly soluble in water.

Unpublished company data on a commercial zinc dialkyldithiophosphate with a carbon chain length of less than eight yielded a log Kow value of 2.49. Longer chain materials are likely to have higher octanol/water partition coefficients. The log Kow is a measure of the lipophilicity of a substance and is used as a surrogate indicator of the potential of a chemical substance to bioaccumulate in aquatic organisms. While Log Kow is a good predictor of bioaccumulation for nonpolar organic compounds, the mechanisms for uptake and depuration of metals and metal compounds are very complex and variable. For metal compounds, the Log Kow data are not indicative of the bioaccumulation potential .

Fate and Transport Characteristics. Members of this category are expected to be poorly biodegradable.

The members of the category are resistant to hydrolysis at room temperature because they lack readily hydrolysable moieties. When heated hydrolytic degradation results in the formation of the phosphorothioic acid ester and hydrogen sulfide. Continued heating at high temperatures results in the formation of the mono-ester and eventually, phosphorothioic acid itself.

These materials are known to be thermally labile at temperatures >120 C. This decomposition mechanism is key to how the zinc salts provide anti-wear and anti-oxidation performance enhancements in engine oils. Photodegradation is not expected to cause significant physical degradation of dithiophosphate alkyl esters. Category members

do not contain bonds that have a high potential to absorb UV light above 290 nm. These substances have low vapor pressure, which indicates that they have a low potential to partition into the air to a significant extent where they would be subject to indirect photodegradation.

These substances are not expected to partition to water or air if released into the environment due to their low water solubility and low vapor pressure. They are also hydrophobic in nature, which suggests that any which reaches the water compartment will be immobilized through binding to the organic component of soils and sediments.

A Japanese MITI publication cited a bioaccumulation factor of less than 100 for a C4-5 ester zinc dithiophosphate indicating a low potential for bioconcentration or cumulative effects.

The hydrocarbon portion of these compounds that is susceptible to biodegradation is present in both the zinc dialkyldithiophosphates and the dithiophosphate alkyl esters. Therefore, it is expected that the dithiophosphate alkyl esters will behave similarly. The zinc salts are poorly biodegradable. Ecotoxicity:

The low water solubility suggests that the acute aquatic toxicity of these substances should be low due to limited bioavailability

to aquatic organisms. However, the length of the alkyl side chains on these substances will influence their relative water solubility, and, hence, their relative toxicity. Diethyl dithiophosphate for example is highly toxic to Daphnids Zinc O.O-bis(isooctyl)dithiophosphate (CAS RN 28629-66-5) also appears to be harmful to aquatic organisms such as fish and

Daphnids.

In air ammonia is persistent whilst, in water, it biodegrades rapidly to nitrate, producing a high oxygen demand. Ammonia is strongly adsorbed to soil. Ammonia is non-persistent in water (half-life 2 days) and is moderately toxic to fish under normal temperature and pH conditions. Ammonia is harmful to aquatic life at low concentrations but does not concentrate in the food chain.

Drinking Water Standards: 0.5 mg/l (UK max.)

1.5 mg/l (WHO Levels)

Soil Guidelines: none available.

Air Quality Standards: none available.

Studies on various thiophosphates indicated complete mineralization within three weeks by acclimation. A water stability study demonstrated the nature of hydrolysis involves the attack of water molecule on the phosphorus ester involving P-O bond fission.

DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
ammonium diethyldithiophosphate	HIGH		LOW	HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse ٠
- Recycling •
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

Air Transport IATA:

ICAO/IATA Class:	9	ICAO/IATA Subrisk:	None
UN/ID Number:	3335	Packing Group:	-
Special provisions:	A27		
 Air transport may be forbidden if this material is flammable, corrosive or toxic gases may be released under 			

normal conditions of transport.

Shipping Name: AVIATION REGULATED SOLID, N.O.S. * †(CONTAINS AMMONIUM DIETHYLDITHIOPHOSPHATE) NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IMDG

Section 15 - REGULATORY INFORMATION

ammonium diethyldithiophosphate (CAS: 1068-22-0) is found on the following regulatory lists; "US - California Air Toxics ""Hot Spots"" List (Assembly Bill 2588) Substances for which emissions must be quantified"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- May produce discomfort of the eyes*.
 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

 Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Nov-1-2008 Print Date:Apr-21-2010