DNP-glycine

sc-223954

Material Safety Data Sheet

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

DNP-glycine

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz. California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C8-H7-N3-O6, "N-2, 4-DNP-glycine", "amino-acid derivative"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability	1		
Toxicity	2		
Body Contact	0		Min/Nil=0 Low=1
Reactivity	2		Moderate=2
Chronic	0		High=3 Extreme=4

CANADIAN WHMIS SYMBOLS

None

EMERGENCY OVERVIEW RISK

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- The substance and/or its metabolites may bind to haemoglobin inhibiting normal uptake of oxygen.

This condition, known as "methaemoglobinemia", is a form of oxygen starvation (anoxia).

EYE

■ Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result.

SKIN

■ The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models).

Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models).

Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course.

Chronic exposure to nitro compounds of aromatic hydrocarbons have been known to cause liver and kidney damage with production of acute yellow atrophy, toxic hepatitis and fatty degeneration of the kidneys. [OHS 24320].

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS					
NAME	CAS RN	%			
N-2,4-dinitrophenyl-glycine	1084-76-0	>98			

Section 4 - FIRST AID MEASURES

SWALLOWED

• If swallowed do NOT induce vomiting.

- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.

EYE

If this product comes in contact with the eyes

- · Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

CKIN

If skin or hair contact occurs

- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Symptoms of vasodilation and reflex tachycardia may present following organic nitrate overdose; most organic nitrates are extensively metabolised by hydrolysis to inorganic nitrites. Organic nitrates and nitrites are readily absorbed through the skin, lungs, mucosa and gastro-intestinal tract.

The toxicity of nitrates and nitrites result from their vasodilating properties and their propensity to form methaemoglobin.

- Most produce a peak effect within 30 minutes.
- Clinical signs of cyanosis appear before other symptoms because of the dark pigmentation of methaemoglobin.
- Initial attention should be directed towards improving oxygen delivery, with assisted ventilation, if necessary. Hyperbaric oxygen has not demonstrated conclusive benefits.
- Institute cardiac monitoring, especially in patients with coronary artery or pulmonary disease.

Section 5 - FIRE FIGHTING MEASURES				
Vapor Pressure (mmHG)	Negligible			
Upper Explosive Limit (%)	Not available.			
Specific Gravity (water=1)	Not available			
Lower Explosive Limit (%)	Not available			

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use water delivered as a fine spray to control fire and cool adjacent area.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

· Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are

combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions.

- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an
 explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust
 clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420
 micron or less) may burn rapidly and fiercely if ignited particles exceeding this limit will generally not form
 flammable dust clouds.; once initiated, however, larger particles up to 1400 microns diameter will contribute to
 the propagation of an explosion.
- In the same way as gases and vapors, dusts in the form of a cloud are only ignitable over a range of
 concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL).are
 applicable to dust clouds but only the LEL is of practical use; this is because of the inherent difficulty of
 achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum
 Explosible Concentration", MEC)
- A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.

Combustion products include carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

 Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.

MAJOR SPILLS

Moderate hazard.

- CAUTION Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- · Keep containers securely sealed.

- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA mg/m³	STEL mg/m³	Peak mg/m³	TWA F/CC	Notes
US OSHA Permissible Exposure Levels (PELs) - Table Z3	N-2,4- dinitrophenyl- glycine (Inert or Nuisance Dust (d) Respirable fraction)	5				
US OSHA Permissible Exposure Levels (PELs) - Table Z3	N-2,4- dinitrophenyl- glycine (Inert or Nuisance Dust (d) Total dust)	15				
US - Oregon Permissible Exposure Limits (Z-3)	N-2,4- dinitrophenyl- glycine (Inert or Nuisance Dust (d) Total dust)	10				Oregon Permissible Exposure Limits (PELs) are different than the federal limits.
US - Hawaii Air Contaminant Limits	N-2,4- dinitrophenyl- glycine (Particulates not other wise regulated - Total dust)	10				
US - Hawaii Air Contaminant Limits	N-2,4- dinitrophenyl- glycine (Particulates not other wise regulated - Respirable fraction)	5				
US - Oregon Permissible Exposure Limits (Z-3)	N-2,4- dinitrophenyl- glycine (Inert or Nuisance Dust(d) Respirable fraction)	5				Oregon Permissible Exposure Limits (PELs) are different than the federal limits.
Canada - Ontario Occupational Exposure Limits	N-2,4- dinitrophenyl- glycine (Particles (Insoluble or Poorly Soluble) Not Otherwise)	10 (I)				
Canada - British Columbia Occupational Exposure Limits	N-2,4- dinitrophenyl- glycine (Particles (Insoluble or Poorly Soluble) Not	10 (N)				

	Otherwise Classified (PNOC))		
Canada - Ontario Occupational Exposure Limits	N-2,4- dinitrophenyl- glycine (Specified (PNOS) / Particules (insolubles ou peu solubles) non précisées par ailleurs)	3 (R)	
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	N-2,4- dinitrophenyl- glycine (Particulates not otherwise regulated Respirable fraction)	5	
US - California Permissible Exposure Limits for Chemical Contaminants	N-2,4- dinitrophenyl- glycine (Particulates not otherwise regulated Respirable fraction)	5	(n)
US - Oregon Permissible Exposure Limits (Z-1)	N-2,4- dinitrophenyl- glycine (Particulates not - otherwise regulated (PNOR) (f) Total Dust)	10	Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."
US - Michigan Exposure Limits for Air Contaminants	N-2,4- dinitrophenyl- glycine (Particulates not otherwise regulated, Respirable dust)	5	
US - Oregon Permissible Exposure Limits (Z-1)	N-2,4- dinitrophenyl- glycine (Particulates not otherwise regulated (PNOR) (f) Respirable Fraction)	5	Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	N-2,4- dinitrophenyl- glycine (Particulates not otherwise regulated (PNOR)(f)-	5	

Respirable fraction)

PERSONAL PROTECTION

RESPIRATOR

Particulate. (AS/NZS 1716 & 1715, EN 1432000 & 1492001, ANSI Z88 or national equivalent)

FYF

- · Safety glasses with side shields
- · Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc

OTHER

- Overalls.
- P.V.C. apron.
- · Barrier cream.
- Skin cleansing cream.

ENGINEERING CONTROLS

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

State	Divided solid	Molecular Weight	241.16
Melting Range (°F)	Not available	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	Not available	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapor Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Crystalline powder; partially soluble in water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

STORAGE INCOMPATIBILITY

- Polynitro derivatives of mono- and poly- cyclic systems are often explosives liable to detonate on grinding or impact.
- The presence of two or more nitro groups (each with 2 oxygen atoms) on an aromatic nucleus often increase
 the reactivity of other substituents and the tendency towards explosive instability as oxygen balance is
 approached.
- Aromatic nitro compounds range from slight to strong oxidizing agents. If mixed with reducing agents, including
 hydrides, sulfides and nitrides, they may begin a vigorous reaction that culminates in a detonation. The
 explosive tendencies of aromatic nitro compounds are increased by the presence of multiple nitro groups.
- In view of the reports of previous violent or explosive reactions, heating of polynitroaryl (particularly di- and tri-nitroaryl) compounds with alkalies, ammonia, or O-ethylsulfuric acid salts, in autoclaves should be avoided.
- Avoid reaction with oxidising agents

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

N-2,4-dinitrophenyl-glycine

TOXICITY AND IRRITATION N-2,4-DINITROPHENYL-GLYCINE

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

No data

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- · Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

NN-2,4-dinitrophenyl-glycine (CAS: 1084-76-0) is found on the following regulatory lists;

"Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)","US - Hawaii Air Contaminant Limits","US - Oregon Permissible Exposure Limits (Z-3)","US OSHA Permissible Exposure Levels (PELs) - Table Z3"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- * (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance CAS Suggested codes

N- 2, 4- dinitrophenyl- glycine 1084- 76- 0 R43

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written

permission from CHEMWATCH. TEL (+61 3) 9572 4700. <u>www.chemwatch.net</u>

Issue Date: Feb-8-2011 Print Date:Dec-1-2011