

2,4-Dinitrobenzenesulfenyl chloride

sc-225692

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

2,4-Dinitrobenzenesulfenyl chloride

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch
Within the US & Canada: 877-715-9305
Outside the US & Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

SYNOMYS

C6-H3-Cl-N2-O4-S, (O2N)2C6H3SCl, "2, 4-dinitrophenylsulfenyl chloride", "Kharasch Reagent"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	1		
Toxicity:	2		
Body Contact:	4		Min/Nil=0 Low=1 Moderate=2 High=3 Extreme=4
Reactivity:	2		
Chronic:	2		

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Causes severe burns.

Risk of serious damage to eyes.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and esophagus.
- Accidental ingestion of the material may be damaging to the health of the individual.
- The substance and/or its metabolites may bind to hemoglobin inhibiting normal uptake of oxygen. This condition, known as "methemoglobinemia", is a form of oxygen starvation (anoxia).

EYE

- The material can produce severe chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
- If applied to the eyes, this material causes severe eye damage.
- Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely.
- Irritation of the eyes may produce a heavy secretion of tears (lachrymation).

SKIN

- The material can produce severe chemical burns following direct contact with the skin.
- Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
- Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction.

INHALED

- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Hydrogen chloride (HCl) vapour or fumes present a hazard from a single acute exposure. Exposures of 1300 to 2000 ppm have been lethal to humans in a few minutes.

CHRONIC HEALTH EFFECTS

- Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and/or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs.
- Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.
- Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.
- Chronic minor exposure to hydrogen chloride (HCl) vapour or fume may cause discolouration or erosion of the teeth, bleeding of the nose and gums; and ulceration of the nasal mucous membranes.
- Repeated exposures of animals to concentrations of about 34 ppm HCl produced no immediate toxic effects.
- Workers exposed to hydrochloric acid suffered from gastritis and a number of cases of chronic bronchitis have also been reported.
- Repeated or prolonged exposure to dilute solutions of HCl may cause dermatitis.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
2,4-dinitrobenzenesulfenyl chloride	528-76-7	>98
hydrolysis produces		
hydrogen chloride	7647-01-0	

Section 4 - FIRST AID MEASURES

SWALLOWED

- For advice, contact a Poisons Information Center or a doctor at once. · Urgent hospital treatment is likely to be needed.

EYE

- If this product comes in contact with the eyes: · Immediately hold eyelids apart and flush the eye continuously with running water. · Ensure

complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin or hair contact occurs: · Immediately flush body and clothes with large amounts of water, using safety shower if available. · Quickly remove all contaminated clothing, including footwear.

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested. Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g.

NOTES TO PHYSICIAN

■ Treat symptomatically.

For acute or short term repeated exposures to strong acids:

· Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.

· Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling.

The material may induce methemoglobinemia following exposure.

· Initial attention should be directed at oxygen delivery and assisted ventilation if necessary. Hyperbaric oxygen has not demonstrated substantial benefits.

· Hypotension should respond to Trendelenburg's position and intravenous fluids; otherwise dopamine may be needed.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG): Negligible

Upper Explosive Limit (%): Not available.

Specific Gravity (water=1): Not available

Lower Explosive Limit (%): Not available

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.

FIRE FIGHTING

· Alert Emergency Responders and tell them location and nature of hazard.

· Wear full body protective clothing with breathing apparatus.

When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 800 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible.
- Slight fire hazard when exposed to heat or flame.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO₂), hydrogen chloride, phosgene, nitrogen oxides (NO_x), sulfur oxides (SO_x), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Safety Glasses.

Full face- shield.

Gloves:

Respirator:

Type AB-P Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.

MAJOR SPILLS

- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- DO NOT use aluminum or galvanized containers.

Check regularly for spills and leaks.

- Lined metal can, Lined metal pail/drum
- Plastic pail.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

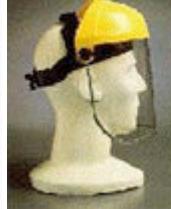
Corrodes steel.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS


Source	Material	TWA ppm	TWA mg/m ³	STEL ppm	STEL mg/m ³	Peak ppm	Peak mg/m ³	TWA F/CC	Notes
Canada - Alberta Occupational Exposure Limits	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)					2	3		
Canada - British Columbia Occupational Exposure Limits Revised 2003	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)					2			
US - Minnesota Permissible Exposure Limits (PELs)	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)					5	7		
US ACGIH Threshold Limit Values (TLV)	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)					2			TLV Basis: upper respiratory tract irritation
US NIOSH Recommended Exposure Limits (RELs)	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)					5	7		
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)					5	7		
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)	(C)5		(C)7					
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)					5	7		

US - California Permissible Exposure Limits for Chemical Contaminants	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride; muriatic acid)	5	7	C	
US - Idaho - Limits for Air Contaminants	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)			5	7
US - Hawaii Air Contaminant Limits	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)			5	7
US - Alaska Limits for Air Contaminants	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)			5	7
US - Michigan Exposure Limits for Air Contaminants	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)			5	7
Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)	5	7	-	-
US - Washington Permissible exposure limits of air contaminants	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)			5.0	
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)			2	
US - Oregon Permissible Exposure Limits (Z-1)	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)			5	7
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)			5	7
Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)			5	7,5
US OSHA Permissible Exposure Levels (PELs) - Table Z1	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)			5	7
Canada - Northwest Territories Occupational Exposure Limits (English)	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)			5	7.5

Canada - Nova Scotia	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)	2	TLV Basis: upper respiratory tract irritation
Canada - Prince Edward Island	2,4-dinitrobenzenesulfenyl chloride (Hydrogen chloride)	2	TLV Basis: upper respiratory tract irritation

ENDOELTABLE

PERSONAL PROTECTION

RESPIRATOR

Type AB-P Filter of sufficient capacity
Consult your EHS staff for recommendations

EYE

- Chemical goggles.
- Full face shield.

HANDS/FEET

- Elbow length PVC gloves.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- PVC Apron.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Corrosive.
Acid.

State	DIVIDED SOLID	Molecular Weight	234.62
Melting Range (°F)	201.2- 206.6	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Reacts
Flash Point (°F)	Not available	pH (1% solution)	Not available
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	>1
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Yellow powder; moisture sensitive. Soluble in glacial acetic acid, methylene chloride, ethylene chloride, trichloroethylene, benzene, xylene. Reacts with alcohol to produce ethyl 2,4-dinitrobenzenesulfenate.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Contact with alkaline material liberates heat.
- Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY

■ Hydrogen chloride:

- reacts strongly with strong oxidisers (releasing chlorine gas), acetic anhydride, caesium cyanotridecahydrodecaborate(2-), ethylidene difluoride, hexolithium disilicide, metal acetylides, sodium, silicon dioxide, tetraselenium tetranitride, and many organic materials
- is incompatible with aliphatic amines, alkanolamines, alkylene oxides, aluminium, aluminium-titanium alloys, aromatic amines, amides, 2-aminoethanol, ammonia, ammonium hydroxide, calcium phosphide, chlorosulfonic acid, ethylenediamine, ethylenimine, epichlorohydrin, isocyanates, metal acetylides, metal carbides, oleum, organic anhydrides, perchloric acid, 3-propiolactone, sulfuric acid, uranium phosphide, vinyl acetate, vinylidene fluoride
- attacks most metals forming flammable hydrogen gas, and some plastics, rubbers and coatings.
- Polynitro derivatives of mono- and poly-cyclic systems are often explosives liable to detonate on grinding or impact.
- The presence of two or more nitro groups (each with 2 oxygen atoms) on an aromatic nucleus often increase the reactivity of other substituents and the tendency towards explosive instability as oxygen balance is approached.
- Aromatic nitro compounds range from slight to strong oxidizing agents. If mixed with reducing agents, including hydrides, sulfides and nitrides, they may begin a vigorous reaction that culminates in a detonation. The explosive tendencies of aromatic nitro compounds are increased by the presence of multiple nitro groups.
- In view of the reports of previous violent or explosive reactions, heating of polynitroaryl (particularly di- and tri-nitroaryl) compounds with alkalies, ammonia, or O-ethylsulfuric acid salts, in autoclaves should be avoided.
- Nitroaromatic and in particular polynitroaromatic compounds may present a severe explosion risk if subjected to shock or heated rapidly and uncontrollably as in fire situations. In addition, when such compounds are heated more moderately with caustic alkalies, even when water or organic solvents are present, there is also a risk of violent decomposition or explosion. Several industrial accidents, which probably were due to such interactions, have occurred; this potential hazard often remains unacknowledged.
- A range of exothermic decomposition energies for nitro compounds is given as 220-410 kJ/mol. The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment. For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g.

BRETHERRICK: Handbook of Reactive Chemical Hazards, 4th Edition

- Reacts with mild steel, galvanized steel / zinc producing hydrogen gas which may form an explosive mixture with air.

Segregate from alcohol, water.

- Avoid strong bases.

Segregate from alkalis, oxidizing agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.

- NOTE: May develop pressure in containers; open carefully. Vent periodically.

Sulfonyl halides are reactive sulfonic acid derivatives similar in properties and reactivities to acid chlorides of carboxylates. The attack of a nucleophile on a sulfonyl chloride involves temporary formation of a pentavalent intermediate which is highly crowded and unstable. Sulfonyl chlorides conjugate readily with proteins and other amine-containing compounds. Hydrolysis may occur in aqueous environments. Sulfonyl chlorides should be stored under nitrogen or in a desiccator to prevent breakdown by moisture

Sulfonyl halides:

- tend to react violently with protic organic solvents, water, and the aprotic solvents, dimethylformamide and dimethyl sulfoxide.
- may react violently with ethers
- may react explosively or violently with sulfoxides in the absence of diluent or other effective control of reaction rate;

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

2,4-dinitrobenzenesulfenyl chloride

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

■ The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough

Cargo Only
Packing Instructions: 50 kg Maximum Qty/Pack: 15 kg
Passenger and Cargo Passenger and Cargo
Packing Instructions: 816 Maximum Qty/Pack: 814
Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity
Packing Instructions: 5 kg Maximum Qty/Pack: Y814
Shipping Name: CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S.
*(CONTAINS 2,4-DINITROBENZENESULFENYL CHLORIDE)

Maritime Transport IMDG:

IMDG Class: 8 IMDG Subrisk: None
UN Number: 3261 Packing Group: II
EMS Number: F-A , S-B Special provisions: 274
Limited Quantities: 1 kg
Shipping Name: CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S.

Section 15 - REGULATORY INFORMATION

2,4-dinitrobenzenesulfenyl chloride (CAS: 528-76-7) is found on the following regulatory lists;

"Canada Non-Domestic Substances List (NDSL)", "US Toxic Substances Control Act (TSCA) - Inventory"

Regulations for ingredients

hydrogen chloride (CAS: 7647-01-0) is found on the following regulatory lists;

"Canada - Alberta Ambient Air Quality Objectives", "Canada - Alberta Occupational Exposure Limits", "Canada - British Columbia Occupational Exposure Limits", "Canada - Northwest Territories Occupational Exposure Limits (English)", "Canada - Nova Scotia Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits - Carcinogens", "Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)", "Canada - Saskatchewan Industrial Hazardous Substances", "Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits", "Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances", "Canada Controlled Drugs and Substances Act Schedule VI", "Canada Domestic Substances List (DSL)", "Canada Ingredient Disclosure List (SOR/88-64)", "Canada National Pollutant Release Inventory (NPRI)", "Canada Prohibited Toxic Substances, Schedule 2, Concentration Limits (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "CODEX General Standard for Food Additives (GSFA) - Additives Permitted for Use in Food in General, Unless Otherwise Specified, in Accordance with GMP", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "IMO IBC Code Chapter 17: Summary of minimum requirements", "IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk", "International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs", "International Council of Chemical Associations (ICCA) - High Production Volume List", "International Maritime Dangerous Goods Requirements (IMDG Code) - Goods Forbidden for Transport", "OECD Representative List of High Production Volume (HPV) Chemicals", "United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances - Table II", "United Nations List of Precursors and Chemicals Frequently used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances Under International Control - Table II", "US - Alaska Limits for Air Contaminants", "US - California Air Toxics ""Hot Spots"" List (Assembly Bill 2588) Substances for which emissions must be quantified", "US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List", "US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)", "US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - California Toxic Air Contaminant List Category II", "US - Connecticut Hazardous Air Pollutants", "US - Florida Essential Chemicals", "US - Hawaii Air Contaminant Limits", "US - Idaho - Limits for Air Contaminants", "US - Massachusetts Oil & Hazardous Material List", "US - Michigan Exposure Limits for Air Contaminants", "US - Minnesota Hazardous Substance List", "US - Minnesota Permissible Exposure Limits (PELs)", "US - New Jersey Right to Know Hazardous Substances", "US - Oregon Hazardous Materials", "US - Oregon Permissible Exposure Limits (Z-1)", "US - Pennsylvania - Hazardous Substance List", "US - Rhode Island Hazardous Substance List", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants", "US - Washington Permissible exposure limits of air contaminants", "US - Wyoming List of Highly Hazardous Chemicals, Toxics and Reactives", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants", "US ACGIH Threshold Limit Values (TLV)", "US ACGIH Threshold Limit Values (TLV) - Carcinogens", "US Clean Air Act - Hazardous Air Pollutants", "US CWA (Clean Water Act) - List of Hazardous Substances", "US CWA (Clean Water Act) - Reportable Quantities of Designated Hazardous Substances", "US Department of Homeland Security Chemical Facility Anti-Terrorism Standards - Chemicals of Interest", "US Department of Transportation (DOT) List of Hazardous Substances and Reportable Quantities - Hazardous Substances Other Than Radionuclides", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Drug Enforcement Administration (DEA) List I and II Regulated Chemicals", "US EPA Acute Exposure Guideline Levels (AEGLs) - Final", "US EPA High Production Volume Chemicals Additional List", "US EPA Master Testing List - Index I Chemicals Listed", "US EPCRA Section 313 Chemical List", "US Food Additive Database", "US List of Lists - Consolidated List of Chemicals Subject to EPCRA, CERCLA and Section 112(r) of the Clean Air Act", "US NFPA 45 Fire Protection for Laboratories Using Chemicals - Flammability Characteristics of Common Compressed and Liquefied Gases", "US NIOSH Recommended Exposure Limits (RELs)", "US OSHA List of Highly Hazardous Chemicals, Toxics and Reactives", "US OSHA Permissible Exposure Levels (PELs) - Table Z1", "US Postal Service (USPS) Hazardous Materials Table: Postal Service Mailability Guide", "US SARA Section 302 Extremely Hazardous Substances", "US Spacecraft Maximum Allowable Concentrations (SMACs) for Airborne Contaminants", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

ND

Substance CAS Suggested codes 2, 4- dinitrobenzenesulfenyl chloride 528- 76- 7 AUTOID~ hydrogen chloride 7647- 01- 0 AUTOID~

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of

merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

■ Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
A list of reference resources used to assist the committee may be found at:
www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Mar-16-2009

Print Date: Mar-3-2011