Carboxine

sc-234286

Material Safety Data Sheet

The Power to Questi

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Carboxine

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C12-H13-N-O2-S, "1, 4-oxathiin-3-carboxamide, 5, 6-dihydro-2-methyl-N-phenyl-", "1, 4-oxathiin-3-carboxanilide, 5, 6-dihydro-2-methyl-N-phenyl-1, 4-oxathiin-3-carboxamide", "2, 3-dihydro-5-carboxanilido-6-methyl-1, 4-oxathiin", "5, 6-dihydro-2-methyl-1, 4-oxathiin-3-carboxanilide", carboxine, D-735, DCMO, DMOC, Vitavax, "pesticide/ fungicide"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max	
Flammability	1			
Toxicity	2		Min/Nil=0 Low=1	
Body Contact	2		Moderate=2	
Reactivity	1		High=3	
	·		Extreme=4	

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Harmful in contact with skin and if swallowed.

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Limited evidence exists that this substance may cause irreversible mutations (though not lethal) even following a single exposure.
- Symptoms of carboxin poisoning include headache and vomiting; it may affect metabolism in the liver and bone. **EYE**
- Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result.
- Animal testing shows that carboxin wettable powder or dust applied to the eyes may produce maked and persistent effects on the conjunctiva, irritation of the iris and clouding of the cornea which may last more than 2 weeks.

SKIN

- Skin contact with the material may be harmful; systemic effects may result following absorption.
- The material is not thought to be a skin irritant (as classified by EC Directives using animal models).

Abrasive damage however, may result from prolonged exposures.

- Animal testing has shown that carboxin does not cause skin irritation.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models).

Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

- No deaths occurred in rats after one hour of exposure to 20mL/L carboxin.
- Limited evidence exists that this substance may cause irreversible mutations (though not lethal) even following a single exposure.

CHRONIC HEALTH EFFECTS

■ Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

Based on laboratory and animal testing, exposure to the material may result in irreversible effects and mutations

in humans.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

In a 90-day feeding study rats fed 600 ppm carboxin showed degenerative renal changes. In a 2-year feeding study rats fed at 600 ppm showed a poor survival rate and weight gain depression.

In a 3-generation reproduction study rats were administered up to 30 mg/kg/day carboxin in the diet. No compound related effects on reproductive performance at any dose level was observed.

Most arylamines are very toxic to the blood cell-forming system, and they produce methaemoglobinaemia in humans. High doses congest the spleen and then cause formation of sarcomas (a type of malignant tumour). Single ring aromatic amines have relatively weak cancer-causing properties, and in animal testing are only harmful in large doses. The polycyclic aromatic amines show a wide range of cancer-causing activity, partly dependent on the position where benzene rings are substituted and the nature of the substituent.

Most monocyclic arylamines cause deposition of iron-containing proteins in tissues and organs. They cause genetic toxicity and acute toxic effects, but it is not clear whether this is influenced by iron release during the formation of methaemoglobin or red blood cell turnover and the stress associated with these processes. In any case, toxic tissue changes and scarring occur before the development of tumours in the spleen, liver and kidneys.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS						
NAME		CAS RN	%			
carboxin		5234-68-4	>98			

Section 4 - FIRST AID MEASURES

SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- For advice, contact a Poisons Information Centre or a doctor.
- · Urgent hospital treatment is likely to be needed.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.

EYE

If this product comes in contact with the eyes

- · Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin contact occurs

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

■ for poisons (where specific treatment regime is absent)

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.

- Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.

Treat symptomatically.

The principal metabolic pathway in rats and rabbits is o- or p-hydroxylation followed by glucuronidation.

Section 5 - FIRE FIGHTING MEASURES					
Vapor Pressure (mmHg)	53.254 nPa (20 C)				
Upper Explosive Limit (%)	Not available.				
Specific Gravity (water=1)	1.36				
Lower Explosive Limit (%)	0.52 oz/ft3				

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use water delivered as a fine spray to control fire and cool adjacent area.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an
 explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust
 clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420
 micron or less) may burn rapidly and fiercely if ignited particles exceeding this limit will generally not form
 flammable dust clouds.; once initiated, however, larger particles up to 1400 microns diameter will contribute to
 the propagation of an explosion.
- In the same way as gases and vapors, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL).are applicable to dust clouds but only the LEL is of practical use; this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC)
- A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.

Combustion products include carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

• Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.

MAJOR SPILLS

Moderate hazard.

- CAUTION Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- · Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

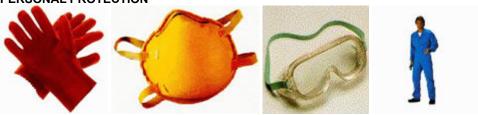
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- · Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.


Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA mg/m³	STEL mg/m³	Peak mg/m³	TWA F/CC	Notes
Canada - Ontario Occupational Exposure Limits	carboxin (Particles (Insoluble or Poorly Soluble) Not Otherwise)	10 (I)				
Canada - British Columbia Occupational Exposure Limits	carboxin (Particles (Insoluble or Poorly Soluble) Not Otherwise Classified (PNOC))	10 (N)				
Canada - Ontario Occupational Exposure Limits	carboxin (Specified (PNOS) / Particules (insolubles ou peu solubles) non précisées par ailleurs)	3 (R)				

US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	carboxin (Particulates not otherwise regulated Respirable fraction)	5	
US - California Permissible Exposure Limits for Chemical Contaminants	carboxin (Particulates not otherwise regulated Respirable fraction)	5	(n)
US - Oregon Permissible Exposure Limits (Z-1)	carboxin (Particulates not otherwise - regulated (PNOR) (f) Total Dust)	10	Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."
US - Michigan Exposure Limits for Air Contaminants	carboxin (Particulates not otherwise regulated, Respirable dust)	5	
US - Oregon Permissible Exposure Limits (Z-1)	carboxin (Particulates not otherwise regulated (PNOR) (f) Respirable Fraction)	5	Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	carboxin (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5	

PERSONAL PROTECTION

RESPIRATOR

- •Particulate. (AS/NZS 1716 & 1715, EN 1432000 & 1492001, ANSI Z88 or national equivalent) **EYE**
- Safety glasses with side shields

- · Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include

- frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc

OTHER

- Overalls.
- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.

ENGINEERING CONTROLS

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid

Does not mix with water.

Sinks in water.

State	Divided solid	Molecular Weight	235.30
Melting Range (°F)	196.5- 198.5; 98	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	397	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	784	Vapor Pressure (mmHg)	53.254 nPa (20 C)
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	1.36
Lower Explosive Limit (%)	0.52 oz/ft3	Relative Vapor Density (air=1)	>1
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Dimorphic crystalline solid. Solubility in water = 0.0199% @ 25C. Solubilities (mg/l, 25 deg. C.) acetone 177, methylene chloride 353, methanol 88, ethyl acetate 93. Stable to hydrolysis (25 C) at pH 5, pH 7 and pH 9. pKa <0.5

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- · Hazardous polymerisation will not occur.

STORAGE INCOMPATIBILITY

- Many arylamines (aromatic amines such as aniline, N-ethylaniline, o-toluidine, xylidine etc. and their mixtures) are hypergolic (ignite spontaneously) with red fuming nitric acid. When the amines are dissolved in triethylamine, ignition occurs at -60 deg. C. or less.
- Various metal oxides and their salts may promote ignition of amine-red fuming nitric acid systems. Soluble materials such as copper(I) oxide, ammonium metavanadate are effective; insoluble materials such as copper(II) oxide, iron(II) oxide, potassium dichromate are also effective.
- Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

carboxin

TOXICITY AND IRRITATION

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- [* The Pesticides Manual, Incorporating The Agrochemicals Handbook, 10th Edition, Editor Clive Tomlin, 1994, British Crop Protection Council].

Section 12 - ECOLOGICAL INFORMATION

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

- Containers may still present a chemical hazard/ danger when empty.
- · Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and MSDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that

properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

carboxin (CAS: 5234-68-4) is found on the following regulatory lists;

"US - Delaware Pollutant Discharge Requirements - Reportable Quantities", "US EPCRA Section 313 Chemical List", "US List of Lists - Consolidated List of Chemicals Subject to EPCRA, CERCLA and Section 112(r) of the Clean Air Act"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- Exposure may produce irreversible effects*.
- * (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance CAS Suggested codes carboxin 5234- 68- 4 Xn; R22

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

www.chemwatch.net

Issue Date: Jul-6-2008 Print Date: Dec-7-2011