
Lutetium(III) sulfate

EMERGENCY OVERVIEW

RISK

Irritating to eyes, respiratory system and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- Sulfates are not well absorbed orally, but can cause diarrhea.
- Lanthanide poisoning causes immediate defecation, writhing, incoordination, labored breathing, and inactivity. Respiratory and heart failure may follow causing death.

EYE

This material can cause eye irritation and damage in some persons.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

■ Not normally a hazard due to non-volatile nature of product.

■ Exposure to vapors of some rare earth salts can cause sensitivity to heat, itching, and increased sensitivity of smell and taste. Other effects include inflamed airways and lung, emphysema, regional narrowing of terminal airways and cell changes. Rarely, excess blood flow has occurred following a delay. Lung cancers can also occur.

CHRONIC HEALTH EFFECTS

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Lutetium is a rare earth metal - heavy type (yttrium family). There has been no reports of poisoning in workers, although the metal can cause chest X-ray abnormalities due to its high density. It can cause scarring of the lungs, anemia and changes in blood cell distribution, due to inhalation of their dusts.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS			
NAME		CAS RN	%
lutetium(III) sulfate		14986-89-1	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.

- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- •
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES			
Vapour Pressure (mmHG):	Not applicable.		
Upper Explosive Limit (%):	Not Applicable		
Specific Gravity (water=1):	Not available		
Lower Explosive Limit (%):	Not Applicable		

EXTINGUISHING MEDIA

- There is no restriction on the type of extinguisher which may be used.

Use extinguishing media suitable for surrounding area.

- **FIRE FIGHTING**
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

Non combustible.

 Not considered to be a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of: sulfur oxides (SOx), metal oxides. May emit poisonous fumes.
May emit corrosive fumes.
FIRE INCOMPATIBILITY

None known.

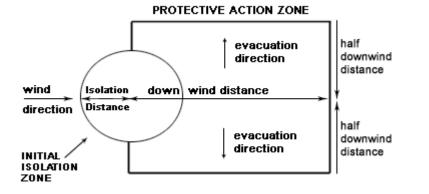
PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.


• Use dry clean up procedures and avoid generating dust.

• Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From US Emergency Response Guide 2000 Guide No guide found.

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide No guide found, is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted

that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and

reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted

that the general population, including susceptible individuals, could

experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.

- · Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS

- Glass container.
- Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

Iutetium(III) sulfate: CAS:14986-89-1

MATERIAL DATA

LUTETIUM(III) SULFATE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and

• acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

as lutetium CEL TWA: 1 mg/m3 (compare TLV-TWA yttrium) Exposure to the vapors of some rare earth salts reportedly produces sensitivity to heat, itching and an increased perception of odor and taste. Other effects may include bronchiolitis, subacute bronchitis, acute transient chemical pneumonitis, focal hypertrophic emphysema, regional bronchiolar stricturing and cellular eosinophilia. In rare fatal cases of exposure to the rare-earth fluoride and/or oxide mixtures, delayed chemical hyperemia has occurred. Lung granulomas have also been seen in experimental animals.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.
- RESPIRATOR
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

.

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-

50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica. Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

•

 Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.

- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.
- Such protection might consist of:

(a): particle dust respirators, if necessary, combined with an absorption cartridge;

(b): filter respirators with absorption cartridge or canister of the right type;

(c): fresh-air hoods or masks

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only
Cimple theory choice that air valuation falls regidly with distance as	you from the exercise of a simple systemation give Melocity generally

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Mixes with water.			
State	Divided solid	Molecular Weight	638.13
Melting Range (°F)	Not available	Viscosity	Not Applicable
Boiling Range (°F)	Not applicable.	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not applicable	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable

Autoignition Temp (°F)	Not Applicable	Vapour Pressure (mmHG)	Not applicable.
Upper Explosive Limit (%)	Not Applicable	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not Applicable	Relative Vapor Density (air=1)	Not applicable.
Volatile Component (%vol)	Not applicable.	Evaporation Rate	Not applicable

APPEARANCE

White crystalline hygroscopic solid; mixes with water (octahydrate; 42.27 gm/100 g H2O at 20 deg C). Becomes less soluble with increasing temperature.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- - Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- -
- WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.
- The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides

Metals and their oxides or salts may react violently with chlorine trifluoride. Chlorine trifluoride is a hypergolic oxidizer. It ignites on contact (without external source of heat or ignition) with recognized fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. The state of subdivision may affect the results.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

LUTETIUM(III) SULFATE

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

• Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating and mucus production.

Lanthanide poisoning causes immediate defecation, writhing, incoordination, labored breathing, and inactivity. Respiratory and heart failure may follow causing death.

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

LUTETIUM(III) SULFATE:

for inorganic sulfates:

Environmental fate:

Data from tap water studies with human volunteers indicate that sulfates produce a laxative effect at concentrations of 1000 - 1200 mg/litre, but no increase in diarrhoea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste; the lowest taste threshold concentration for sulfate is approximately 250 mg/litre as the sodium salt. Sulfate may also contribute to the corrosion of distribution systems. No health-based guideline value for sulfate in drinking water is proposed. However, there is an increasing likelihood of complaints arising from a noticeable taste as concentrations in water increase above 500 mg/litre.

Sulfates are removed from the air by both dry and wet deposition processes. Wet deposition processes including rain-out (a process that occurs within the clouds) and washout (removal by precipitation below the clouds) contribute to the removal of sulfate from the atmosphere.

In soil, the inorganic sulfates can adsorb to soil particles or leach into surface water and groundwater. Sulfates can be taken up by plants and be incorporated into the parenchyma of the plant.

Sulfate in water can also be reduced by sulfate bacteria (Thiobacilli) which use them as a source of energy.

In anaerobic environments sulfate is biologically reduced to (hydrogen) sulfide by sulfate reducing bacteria, or incorporated into living organisms as source of sulfur, and thereby included in the sulfur cycle. Sodium sulfate is not reactive in aqueous solution at room

temperature. Sodium sulfate will completely dissolve, ionise and distribute across the entire planetary "aquasphere". Some sulfates may eventually be deposited, the majority of sulfates participate in the sulfur cycle in which natural and industrial sodium sulfate are not distinguishable

The BCF of sodium sulfate is very low and therefore significant bioconcentration is not expected. Sodium and sulfate ions are essential to all living organisms and their intracellular and extracellular concentrations are actively regulated. However some plants (e.g. corn and Kochia Scoparia), are capable of accumulating sulfate to concentrations that are potentially toxic to ruminants. Ecotoxicity:

Algae were shown to be the most sensitive to sodium sulfate; EC50 120 h = 1,900 mg/l. For invertebrates (Daphnia magna) the EC50 48 h = 4,580 mg/l and fish appeared to be the least sensitive with a LC50 96h = 7,960 mg/l for Pimephales promelas. Activated sludge showed a very low sensitivity to sodium sulfate. There was no effect up to 8 g/l. Sodium sulfate is not very toxic to terrestrial plants. Picea banksiana was the most sensitive species, an effect was seen at 1.4 g/l. Sediment dwelling organisms were not very sensitive either, with an LC50 96h = 660 mg/l for Trycorythus sp. Overall it can be concluded that sodium sulfate has no acute adverse effect on aquatic and sediment dwelling organisms. Toxicity to terrestrial plants is also low.

No data were found for long term toxicity. The acute studies all show a toxicity of sodium sulfate higher than 100 mg/l, no bioaccumulation is expected,

• For lanthanoids (formerly lanthanides; syn rare earth metals and their salts):

Environmental fate:

The natural occurrence of rare earths in the lithosphere is well established at a concentration level of a few hundred part per million. They are therefore not "rare".

Rare earth chlorides are very poorly soluble in water. Modeled water solubilities range from 10-2 to 10-5 mg/l. They are expected to strongly sorb to soil and not expected to volatilise.

Water: Lanthanoid emissions to the environment increase as a result of the growing industrial applications of these elements. However, robust data to evaluate the environmental fate of lanthanoids are scarce.

Changing environmental conditions may influence the fate and bioavailability of lanthanoids (part of the rare earth elements [Ln]) in estuaries. Equilibrium model calculations indicate that dissolved lanthanoids are complexed mainly to carbonates and dissolved organic matter. In the water phase, the relative abundance of the free ion, LnCO3, and humic complexes decreases from lanthanum to lutetium, whereas the relative abundance of Ln(CO3)2 increases. Cerium and europium anomalies were found in water. Europium anomalies were also found in some biota. The biota sediment accumulation factors (BSAFs) decreased across the series from lanthanum to lutetium. Regression analysis revealed that alkalinity correlated negatively with lanthanide uptake. This suggests that increasing complexation reduced bioavailability under the prevailing conditions. The BSAFs did not depend on salinity or pH, which may simplify sediment-quality criteria for fresh versus saline waters. Field BSAFs were significantly lower than laboratory values for the same sediments, which is explained by adaptation of the organisms to lanthanides.

Plant uptake: Lanthanum concentrations in plants and medium and the amounts sorbed to glass vessels were quantified by using the radioisotope 140La. The amount of La adsorbed on the glass reached values of 25% of the total La present. A model was formulated to describe La uptake in exponentially growing duckweed in the presence of an adsorptive surface. Growth-induced dilution appeared more efficient in lowering plant La concentrations than actual elimination. An elimination study revealed two compartments, of which the smallest eliminated 50 times faster than the bigger compartment, which eliminated mainly by growth dilution. The average bioconcentration factor was 2,000 L/kg fresh weight and 30,000 L/kg dry weight, comparable with those of other higher plants. At the applied concentration of 10 nM, no effects were observed on duckweed growth. However, the high bioconcentration factor warrants monitoring of lanthanide emissions.

For cerium oxide (a typical oxide of this group):

Fish LC50 (96 h): fathead minnow >50000 mg/l (low toxicity)

Green algae IC25: 34484 mg/l (low toxicity)

Daphnia LC50 (48 h): Ceriodaphnia dubia >50000 mg/l (low toxicity)

Rare earth chlorides exhibit acute aquatic toxicity at concentrations exceeding 100 ppm and chronic toxicity, persisting for more than 21 days, at concentrations greater than 30 ppm (based on structure activity relationships - QSAR). Industrial processes have little impact on altering background levels. Lanthanum 3+ is toxic to some aquatic organisms.

Dissolved lanthanum is very toxic to species of Daphnia in both chronic and acute tests. It may also be toxic to other species. In a lanthanum bioassay test conducted with solutions of lanthanum chloride made up in water at lanthanum concentrations between (nominally) 750 ug/L and 48 mg/L, 100% mortality of eastern rainbow fish was found for all nominal lanthanum concentrations, indicating a 96 hour LC50 significantly less than the nominal 750 ug/L (measured as 600 ug/L) NICNAS Full Public Report NA/899)

There seems little doubt that dissolved lanthanum has at least high acute and chronic toxicity to fresh water fish and to various species of Daphnia in soft water, although water quality parameters appear to have a very large effect on the toxicity. In sufficiently hard water free lanthanum may be precipitated reducing lanthanum availability to aquatic species and mitigating toxicity.

Similarly, the lanthanum ion is expected to have high affinity for the negatively charged humic material present in most natural waters. This mechanism will also remove lanthanum from the water column.

■ DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal. For small quantities:

- Neutralize an aqueous solution of the material.
- Filter solids for disposal to approved land fill.
- Flush solution to sewer (subject to local regulation)
- Heat and fumes evolved during reaction may be controlledby rate of addition.
- · Recycle wherever possible or consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury residue in an authorized landfill.
- Recycle containers where possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

REGULATIONS

Iutetium(III) sulfate (CAS: 14986-89-1) is found on the following regulatory lists; "Canada Non-Domestic Substances List (NDSL)","US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.

* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Mar-6-2010 Print Date:Aug-19-2010