Octadecanamide

sc-236233

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Octadecanamide

STATEMENT OF HAZARDOUS NATURE

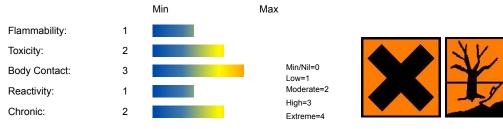
CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA FLAMM BILLITY HEALTH AZARD INST BLITY

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY: ChemWatch


Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C18-H37-N-O, CH3(CH2)16CONH2, stearamide, "Kemamide S", Non-ionic

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Irritating to skin.

Risk of serious damage to eyes.

May cause SENSITISATION by skin contact.

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- Nonionic surfactants may produce localized irritation of the oral or gastrointestinal lining and induce vomiting and mild diarrhea.

EYE

- If applied to the eyes, this material causes severe eye damage.
- Non-ionic surfactants can cause numbing of the cornea, which masks discomfort normally caused by other agents and leads to corneal injury.

Irritation varies depending on the duration of contact, the nature and concentration of the surfactant.

■ Low concentrations (0.

6%) of fatty acid amides such as cocoamide DEA are severely irritating to the eyes of rabbits.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- A 30% fatty acid amide (cocoamide DEA solution) was a moderate skin irritant in rabbits.

Test sites were scored for irritation according to Draize, and the Primary Irritation Index (PII) was 3.

■ Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models).

Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

■ Inhalation of vapours may cause drowsiness and dizziness.

This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME CAS RN % cotadecanamide 124-26-5 >98

Section 4 - FIRST AID MEASURES

SWALLOWED

· If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

EYE

■ If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Other measures are usually unnecessary.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES						
Vapour Pressure (mmHG):	Negligible					
Upper Explosive Limit (%):	Not available.					
Specific Gravity (water=1):	Not available					
Lower Explosive Limit (%):	Not available					

EXTINGUISHING MEDIA

- · Foam.
- · Dry chemical powder.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.

When any large container (including road and rail tankers) is involved in a fire,

consider evacuation by 100 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- · Control personal contact by using protective equipment.
- · Use dry clean up procedures and avoid generating dust.
- · Place in a suitable, labelled container for waste disposal.

Environmental hazard - contain spillage.

MAJOR SPILLS

■ Environmental hazard - contain spillage.

Moderate hazard.

- · CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

 \cdot Avoid all personal contact, including inhalation.

 \cdot Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- · In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- · Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

■ Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US ACGIH Threshold Limit Values (TLV)	octadecanamide (Stearates)		10						TLV Basis: eye, skin & upper respiratory tract irritation. Does not include stearates of toxic metals
Canada - British Columbia Occupational Exposure Limits	octadecanamide (Stearates)		10 (J)						
Canada - Prince Edward Island Occupational Exposure Limits	octadecanamide (Stearates)		10						TLV Basis: eye, skin & upper respiratory tract irritation. Does not include stearates of toxic metals
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	octadecanamide (Stearates)		10		20				
Canada - Nova Scotia Occupational Exposure Limits	octadecanamide (Stearates)		10						TLV Basis: eye, skin & upper respiratory tract irritation. Does not include stearates of toxic metals

ENDOELTABLE

PERSONAL PROTECTION

RESPIRATOR

•Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

FYF

- · Safety glasses with side shields.
- Chemical goggles.

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- · nitrile rubber
- · butyl rubber
- · fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · Overalls.
- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

ENGINEERING CONTROLS

- · Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

State	Divided solid	Molecular Weight	283.50
Melting Range (°F)	216- 219	Viscosity	Not Applicable
Boiling Range (°F)	482- 484 (12 mm)	Solubility in water (g/L)	Immiscible
Flash Point (°F)	Not available	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not Applicable

Volatile Component (%vol) Negligible Evaporation Rate Not applicable

APPEARANCE

■ Fatty acid amides (FAAs) comprise a family of neutral lipids that is related to other classes of N-acyl amines, such as N-acyl amino acids, N-acylethanolamines, and more complicated species like sphingomyelins and ceramides. Commercial FAAs generally consist of a fatty acid, usually derived from coconut oil, which is linked to an amide group by a C-N bond. The amide may either be monoethanolamide (MEA), diethanolamide (DEA), or monoisopropanolamide (MIPA). Representative structures of FAA are indicated below. The alkyl chain usually contains 12 to 18 carbon atoms. FAAs can be represented as R-C(=O)-N(R)'R". FAAs which contain a saturated or unsaturated alkyl chain derived from a fatty acid, can be divided into three categories (based on the following notation. The first is primary monoamides in which R is a fatty alkyl or alkenyl chain of C5-C23 and R' =R"= H. The second is substituted monoamides, including secondary, tertiary, and alkanolamides in which R is a fatty alkyl or alkenyl chain of C5-C23; R' and R" may be a hydrogen, fatty alkyl, aryl, or alkylene oxide condensation groups with at least one alkyl, aryl, or alkylene oxide group. The third category is bisamides where R groups are fatty alkyl or alkenyl chains. R' and R" may be hydrogen, fatty alkyl, aryl, or alkylene oxide condensation groups. Primary and secondary amides show strong hydrogen bonding that account for their high melting points and low solubilities in most solvents. With tertiary amides (disubstituted amides), hydrogen bonding is not possible, as exhibited by their increased solubility and lower melting points. Many fatty acid amides are essentially insoluble in water. Amides have a strong tendency to reduce friction on various surfaces by forming a layer on surfaces. This coating action may be attributed to their hydrophobic character and strong hydrogen bonding. Fatty acid amides in general are stable to elevated processing temperatures, air oxidation, and dilute acids and bases. Alkanolamides are made from triglycerides or fatty acid methyl esters reacted with monoethanolamine or diethanolamine that then can be ethoxylated with ethylene oxide under basic catalyses. Common products are stearamide, cocamide, ethylene bis(stearamide), cocamide, DEA or MEA, cocamidopropyl dimethyl amine, and cocamide monoethanolamine ethoxylate Regardless of the carbon number, the melting point of saturated fatty acid amides falls in a range of 100 to 110 C. In contrast, the melting point of unsaturated fatty acid amides is significantly affected by the carbon number of such fatty acid amides; their melting points fall in a range of 70 to 85 C relative to the carbon number in a range of 18 to 22. Off-white powder; does not mix with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

octadecanamide

TOXICITY AND IRRITATION OCTADECANAMIDE:

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type.

Fatty acid amides (FAA) are ubiquitous in household and commercial environments. The most common of these are based on coconut oil fatty acids alkanolamides. These are the most widely studied in terms of human exposure.

Fatty acid diethanolamides (C8-C18) are classified by Comite Europeen des Agents de Surface et de leurs Intermediaires Organiques (CESIO) as Irritating (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes). Fatty acid monoethanolamides are classified as Irritant (Xi) with the risk phrases R41

Several studies of the sensitization potential of cocoamide diethanolamide (DEA) indicate that this FAA induces occupational allergic contact dermatitis and a number of reports on skin allergy patch testing of cocoamide DEA have been published. These tests indicate that allergy to cocoamide DEA is becoming more common.

Alkanolamides are manufactured by condensation of diethanolamine and the methylester of long chain fatty acids. Several alkanolamides (especially secondary alkanolamides) are susceptible to nitrosamine formation which constitutes a potential health problem. Nitrosamine contamination is possible either from pre-existing contamination of the diethanolamine used to manufacture cocoamide DEA, or from nitrosamine formation by nitrosating agents in formulations containing cocoamide DEA. According to the Cosmetic Directive (2000) cocoamide DEA must not be used in products with nitrosating agents because of the risk of formation of N-nitrosamines. The maximum content allowed in cosmetics is 5% fatty acid dialkanolamides, and the maximum content of N-nitrosodialkanolamines is 50 mg/kg. The preservative 2-bromo-2-nitropropane-1,3-diol is a known nitrosating agent for secondary and tertiary amines or amides. Model assays have indicated that 2-bromo-2-nitropropane-1,3-diol may lead to the N-nitrosation of diethanolamine forming the carcinogenic compound, N-nitrosodiethanolamine which is a potent liver carcinogen in rats (IARC 1978).

Several FAAs have been tested in short-term genotoxicity assays. No indication of any potential to cause genetic damage was seen Lauramide DEA was tested in mutagenicity assays and did not show mutagenic activity in Salmonella typhimurium strains or in hamster embryo cells. Cocoamide DEA was not mutagenic in strains of Salmonella typhimurium when tested with or without metabolic activation Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Miljoministeriet (Danish Environmental Protection Agency).

For Fatty Nitrogen Derived (FND) Amides)

The chemicals in the Fatty Nitrogen Derived (FND) Amides of surfactants are similar to the class in general as to physical/chemical properties, environmental fate and toxicity. Human exposure to these chemicals is substantially documented.

Some typical applications of FND Amides are:

masonry cement additive: curing agent for epoxy resins; closed hydrocarbon systems in oil field production, refineries and chemical plants; and slip and antiblocking additives for polymers.

The safety of the FND Amides to humans is recognised by the U.S. FDA, which has approved stearamide, oleamide and/or erucamide for adhesives; coatings for articles in food contact; coatings for polyolefin films; defoaming agents for manufacture of paper and paperboard; animal glue (defoamer in food packaging); in EVA copolymers for food packaging; lubricants for manufacture of metallic food packaging; irradiation of prepared foods; release agents in manufacture of food packaging materials, food contact surface of paper and paperboard; cellophane in food packaging; closure sealing gaskets; and release agents in polymeric resins and petroleum wax. The low order of toxicity indicates that the use of FND Amides does not pose a significant hazard to human health.

The differences in chain length, degree of saturation of the carbon chains, source of the natural oils, or addition of an amino group in the chain would not be expected to have an impact on the toxicity profile. This conclusion is supported by a number of studies in the FND family of chemicals (amines, cationics, and amides as separate categories) that show no differences in the length or degree of saturation of the alkyl substituents and is also supported by the limited toxicity of these long-chain substituted chemicals

The Fatty nitrogen-derived amides (FND amides) comprise four categories:

- · Subcategory I: Substituted Amides
- Subcategory II: Fatty Acid Reaction Products with Amino Compounds (Note: Subcategory II chemicals, in many cases, contain Subcategory I chemicals as major components)
- · Subcategory III: Imidazole Derivatives
- · Subcategory IV: FND Amphoterics

Acute Toxicity: The low acute oral toxicity of the FND Amides is well established across all Subcategories by the available data. The limited acute toxicity of these chemicals is also confirmed by four acute dermal and two acute inhalation studies

Repeated Dose and Reproductive Toxicity: Two subchronic toxicity studies demonstrating low toxicity are available for Subcategory I chemicals. In addition, a 5-day repeated dose study for a third chemical confirmed the minimal toxicity of these chemicals. Since the Subcategory I chemicals are major components of many Subcategory II chemicals, and based on the low repeat-dose toxicity of the amino compounds (e.g. diethanolamine, triethanolamine) used for producing the Subcategory II derivatives, the Subcategory I repeat-dose toxicity studies adequately support Subcategory II.

Two subchronic toxicity studies in Subcategory III confirmed the low order of repeat dose toxicity for the FND Amides Imidazole derivatives. For Subcategory IV, two subchronic toxicity studies for one of the chemicals indicated a low

order of repeat-dose toxicity for the FND amphoteric salts similar to that seen in the other categories.

Genetic Toxicity in vitro: Based on the lack of effect of one or more chemicals in each subcategory, adequate data for mutagenic activity as measured by the Salmonella reverse mutation assay exist for all of the subcategories.

Developmental Toxicity: A developmental toxicity study in Subcategory I and in Subcategory IV and a third study for a chemical in Subcategory III are available. The studies indicate these chemicals are not developmental toxicants, as expected based on their structures, molecular weights, physical properties and knowledge of similar chemicals. As above for repeat-dose toxicity, the data for Subcategory I are adequate to support Subcategory II.

In evaluating potential toxicity of the FND Amides chemicals, it is also useful to review the available data for the related FND Cationic and FND Amines Category chemicals. Acute oral toxicity studies (approximately 80 studies for 40 chemicals in the three categories) provide LD50 values from approximately 400 to 10,000 mg/kg with no apparent organ specific toxicity. Similarly, repeated dose toxicity studies (approximately 35 studies for 15 chemicals) provide NOAELs between 10 and 100 mg/kg/day for rats and slightly lower for dogs. More than 60 genetic toxicity studies (in vitro bacterial and mammalian cells as well as in vivo studies) indicated no mutagenic activity among more than 30 chemicals tested. For reproductive evaluations, 14 studies evaluated reproductive endpoints and/or reproductive organs for 11 chemicals, and 15 studies evaluated developmental toxicity for 13 chemicals indicating no reproductive or developmental effects for the FND group as a whole.

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

This material and its container must be disposed of as hazardous waste.

Avoid release to the environment.

Refer to special instructions/ safety data sheets.

Ecotoxicity

Persistence: Persistence: Air Bioaccumulation Mobility Ingredient Water/Soil

No Data LOW octadecanamide

LOW LOW Available

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

! Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols: G Hazard class or Division: 9 Identification Numbers: UN3077 PG: III Label Codes: 9 Special provisions: 8, 146,

335, B54, IB8, IP3, N20, T1, TP33

Packaging: Exceptions: 155 Packaging: Non- bulk: 213 Packaging: Exceptions: 155 Quantity limitations: No limit

Passenger aircraft/rail:

Quantity Limitations: Cargo No limit Vessel stowage: Location: A

aircraft only:

Vessel stowage: Other: None

Hazardous materials descriptions and proper shipping names:

Environmentally hazardous substance, solid, n.o.s

Air Transport IATA:

UN/ID Number: 3077 Packing Group: III

Special provisions: A97

Cargo Only

Packing Instructions: 956 Maximum Qty/Pack: 400 kg Passenger and Cargo Passenger and Cargo

Packing Instructions: Y956 Maximum Qty/Pack: 400 kg

Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity

Packing Instructions: 956 Maximum Qty/Pack: 30 kg G

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID,

N.O.S. *(CONTAINS OCTADECANAMIDE)

Maritime Transport IMDG: IMDG Class: 9 IMDG Subrisk: None

UN Number: 3077 Packing Group: III

EMS Number: F-A,S-F Special provisions: 274 335 Limited Quantities: 5 kg Marine Pollutant: Yes

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.(contains octadecanamide)

Section 15 - REGULATORY INFORMATION

octadecanamide (CAS: 124-26-5) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "US EPA High Production Volume Program Chemical List", "US FDA Indirect Food Additives: Adhesives and Components of Coatings - Substances for Use Only as Components of Adhesives - Adhesives", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Repeated exposure potentially causes skin dryness and cracking*.
- Vapours potentially cause drowsiness and dizziness*.
- * (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance CAS Suggested codes octadecanamide 124- 26- 5 R43 N; R50/53

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Dec-5-2009 Print Date:Aug-9-2011