Terpinolene

sc-236969

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Terpinolene

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA FLAMM BILITY HEALTH AZARD INSTAULITY

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY:

ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C10-H16, "cyclohexene, 1-methyl-4-(1-methylethylidene)", "1, 4(8)-terpadiene", alpha-terpinolene, Capolene, pheromone, monoterpene, "terpene/ terpenoid", antioxidant

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	2		
Toxicity:	2		
Body Contact:	2		Min/Nil=0 Low=1
Reactivity:	2		Moderate=2
Chronic:	2		High=3 Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

Contact with combustible material may cause fire. May cause SENSITISATION by skin contact. HARMFUL - May cause lung damage if swallowed. Flammable.

Vapours may cause drowsiness and dizziness.

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733)
- Accidental ingestion of the material may be damaging to the health of the individual.
- Terpenes and their oxygen-containing counterparts, the terpenoids, produce a variety of physiological effects.

Pine oil monoterpenes, for example, produce a haemorrhagic gastritis characterised by stomach pain and bleeding and vomiting.

■ Considered an unlikely route of entry in commercial/industrial environments.

The liquid may produce gastrointestinal discomfort and may be harmful if swallowed.

EYE

■ There is some evidence to suggest that this material can causeeye irritation and damage in some persons.

SKIN

- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

■ It is likely that older pine oils become irritants from the build up of peroxides of delta- 3-carene and limonene etc.

INHALED

■ Inhalation of vapours may cause drowsiness and dizziness.

This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

■ There is some evidence to suggest that the material can cause respiratory irritation in some persons.

The body's response to such irritation can cause further lung damage.

- Inhalation hazard is increased at higher temperatures.
- Inhalation of high concentrations of gas/vapor causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatique and inco-ordination.
- Central nervous system (CNS) depression may include general discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness.

 Serious poisonings may result in respiratory depression and may be fatal.
- Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

CHRONIC HEALTH EFFECTS

■ Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Essential oils and isolates derived from the Pinacea family, including Pinus and Abies genera, should only be used when the level of peroxides is kept to the lowest practicable level, for instance by adding antioxidants at the time of production. Such products should have a peroxide value of less than 10 millimoles peroxide per liter. Based on the published literature mentioning sensitising properties when containing peroxides (Food and Chemical Toxicology 11.1053(1973); 16,843(1978); 16,853(1978).

In the presence of air, a number of common flavour and fragrance chemicals can form peroxides surprisingly fast. Antioxidants can in most cases minimise the oxidation.

Fragrance terpenes are generally easily oxidised in air. Non-oxidised limonene, linalool and caryophyllene turned out to be very weak sensitizers, however after oxidation limonene hydroperoxide and linalool hydroperoxide are strong sensitizers. Of the patients tested 2.6% showed positive reaction to oxidised limonene, 1.3% to oxidised linalool, 1.1% to linalool hydroperoxide, 0.5% to oxidised caryophyllene, while testing with caryophyllene oxide and oxidised myrcene resulted in few positive patch tests. 2/3 of the patients reacting positive to oxidised terpenes had fragrance related contact allergy and/or positive history for adverse reactions to fragrances.

As well as the hydroperoxides produced by linalol, limonene and delta-3-carene other oxidation and resinification effects progressively causes other fairly major changes in essential oil quality over time. Autoxidation of fragrance terpenes contributes greatly to fragrance allergy, which emphasizes the need of testing with compounds that patients are actually exposed to and not only with the ingredients originally applied in commercial formulations.

There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
terpinolene	586-62-9	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

· If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. · Avoid giving milk or oils. · Avoid giving alcohol. · If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

FYF

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN

■ Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically.

For acute or short term repeated exposures to petroleum distillates or related hydrocarbons:

- Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated.

Section 5 - FIRE FIGHTING MEASURES Vapor Pressure (mmHg): 0.495 @ 20 C Upper Explosive Limit (%): Not available Specific Gravity (water=1): 0.861 Lower Explosive Limit (%): Not available

EXTINGUISHING MEDIA

- · Foam
- · Dry chemical powder.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · May be violently or explosively reactive.

When any large container (including road and rail tankers) is involved in a fire,

consider evacuation by 500 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Liquid and vapor are flammable.
- · Moderate fire hazard when exposed to heat or flame.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Type A-P Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.

MAJOR SPILLS

■ CARE: Absorbent material wet with occluded oil must be wet with water as they may auto-oxidize, become self heating and ignite. Some oils slowly oxidize when spread in a film and oil on cloths, mops, absorbents may auto-oxidize and generate heat, smoulder, ignite and burn. In the workplace oily rags should be collected and immersed in water.

- · Clear area of personnel and move upwind.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.
- DO NOT allow clothing wet with material to stay in contact with skin.
- · Electrostatic discharge may be generated during pumping this may result in fire.
- · Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- · Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- · Avoid splash filling.
- Do NOT use compressed air for filling discharging or handling operations.
- · Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.

RECOMMENDED STORAGE METHODS

- Packing as supplied by manufacturer. Plastic containers may only be used if approved for flammable liquid.
- · For low viscosity materials (i): Drums and jerricans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C).

STORAGE REQUIREMENTS

- · Store in original containers in approved flammable liquid storage area.
- · DO NOT store in pits, depressions, basements or areas where vapors may be trapped.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
Canada - British Columbia Occupational Exposure Limits	terpinolene (Turpentine and selected monoterpenes Revised 2003)	20							S
Canada - Alberta Occupational Exposure Limits ENDOELTABLE	terpinolene (Turpentine and selected monoterpenes)	20	111						

PERSONAL PROTECTION

RESPIRATOR

•Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

EYE

- · Safety glasses with side shields.
- · Chemical goggles.

HANDS/FEET

■ Wear chemical protective gloves, eg. PVC.

NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- · Overalls.
- · PVC Apron.
- · Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- · For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets), non sparking safety footwear.

ENGINEERING CONTROLS

■ Care: Atmospheres in bulk storages and even apparently empty tanks may be hazardous by oxygen depletion. Atmosphere must be checked before entry.

Requirements of State Authorities concerning conditions for tank entry must be met. Particularly with regard to training of crews for tank entry; work permits; sampling of atmosphere; provision of rescue harness and protective gear as needed.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid.

Does not mix with water.

Floats on water

ricate on water.			
State	Liquid	Molecular Weight	136
Melting Range (°F)	Not available	Viscosity	Not Available
Boiling Range (°F)	363- 365	Solubility in water (g/L)	Immiscible
Flash Point (°F)	99	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapor Pressure (mmHg)	0.495 @ 20 C
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	0.861
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	4.7
Volatile Component (%vol)	100	Evaporation Rate	Not available

APPEARANCE

Water white to pale amber liquid with lemon odour; floats on water. Miscible with alcohol, ether, glycol.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.

STORAGE INCOMPATIBILITY

■ HAZARD: Rags wet / soaked with unsaturated hydrocarbons / drying oils auto oxidize; may generate heat and in-time smoulder and ignite. Oily cleaning rags should be collected regularly and immersed in water.

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

terpinolene

TOXICITY AND IRRITATION

TERPINOLENE:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Oral (Rat) LD50: 4390 mg/kg

■ Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dysonea, cough and mucus production.

For monoterpenes:

The chemical category designated terpenoid hydrocarbons includes three simple C10 isomeric monocyclic terpene hydrocarbons (d-limonene, dl-limonene, and terpinolene) two simple C10 acyclic terpene hydrocarbons (beta-myrcene and dihydromyrcene) and mixtures composed primarily of d-limonene, dl-limonene (dipentene), terpinolene, myrcene, and alphaand beta-pinene

Monoterpene hydrocarbons are mainly released by coniferous woodland such as pine trees, cedars, redwood and firs. To a lesser extent, they are also produced and released by deciduous plants. They are common components of traditional foods occurring in essentially all fruits and vegetables.

Members of this chemical category are of very low acute toxicity

Studies of terpene hydrocarbons indicate that they are rapidly absorbed, distributed, metabolised and excreted. The principal metabolic pathway involves side chain oxidation to yield monocyclic terpene alcohols and carboxylic acids. These metabolites are mainly conjugated with glucuronic acid and excreted in the urine, or to a lesser extent in the feces. A secondary pathway involves epoxidation of either the exocyclic or endocyclic double bond yielding an epoxide that is subsequently detoxicated via formation of the corresponding diol or conjugation with glutathione. Although some species- and sex-specific differences exist, studies for d-limonene and beta-myrcene indicate that the monoterpene hydrocarbons in this chemical category will participate in common pathways of absorption, distribution, metabolism and excretion.

Genotoxicity: Based on the results of this in vivo genotoxicity assay and the numerous in vitro genotoxicity assays, it is unlikely that any of these materials would exhibit a significant genotoxic potential in vivo.

Carcinogenicity: Under the conditions of 2-year gavage studies, conducted by NTP, there was clear evidence of carcinogenic activity of d-limonene for male F344/N rats as shown by increased incidences in tubular cell hyperplasia, adenomas, and adenocarcinomas of the kidney. There was no evidence of carcinogenic activity of d-limonene for female rats receiving 300 or 600 mg/kg bw/d. It has been demonstrated that renal lesions, which were observed in the NTP study, resulted from the accumulation of aggregates of alpha-2 microglobulin (a low molecular-weight protein synthesised in the liver) and limonene-1,2-epoxide in the P2 segment of the renal proximal tubule. While humans produce low molecular weight serum proteins, which are reabsorbed by the kidney, there is no evidence that a similar alpha-2 microglobulin is produced.

The kidney changes seen in male rats administered limonene have been well characterized, and are known to be specific to the male rat and of no significance in human risk assessment.

Reproductive toxicity: Substances within this chemical category exhibit low reproductive toxicity potential. This is based on the results of three reproductive toxicity assays. using sweet orange peel oil predominantly composed of d-limonene and beta-myrcene.

Developmental toxicity: Given the results of six developmental toxicity assays using limonene, sweet orange oil and

beta-myrcene, it may be concluded that the substances within this chemical category exhibit low developmental toxicity potential.

Terpinolene was not irritating to human skin when applied at a concentration of 20% in

petrolatum for 48 hours under a closed patch in 24 volunteers, and it was not a sensitiser in the

maximization test. However, in a case report and was reported that a 49-year old woman developed eczematous lesions of the hands and forearms using a machine cleaner containing terpinolene. Upon patch testing, terpinolene gave a positive reaction.

Terpinolene was not irritating in rabbits when applied to intact or abraded skin with an occluded patch for 24 hours.

Section 12 - ECOLOGICAL INFORMATION

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. This material and its container must be disposed of as hazardous waste.

Avoid release to the environment.

Refer to special instructions/ safety data sheets.

Ecotoxicity

Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility

terpinolene HIGH No Data Available MED MED

GESAMP/EHS COMPOSITE LIST - GESAMP Hazard Profiles

Legend: EHS=EHS Number (EHS=GESAMP Working Group on the Evaluation of the Hazards of Harmful Substances Carried by Ships) NRT=Net Register Tonnage, A1a=Bioaccumulation log Pow, A1b=Bioaccumulation BCF, A1=Bioaccumulation, A2=Biodegradation, B1=Acuteaquatic toxicity LC/ECIC50 (mg/l), B2=Chronic aquatic toxicity NOEC (mg/l), C1=Acute mammalian oral toxicity LD50 (mg/kg), C2=Acutemammalian dermal toxicity LD50 (mg/kg), C3=Acute mammalian inhalation toxicity LC50 (mg/kg), D1=Skin irritation & corrosion, D2=Eye irritation& corrosion, D3=Long-term health effects, E1=Tainting, E2=Physical effects on wildlife & benthic habitats, E3=Interference with coastal amenities, For column A2: R=Readily biodegradable, NR=Not readily biodegradable. For column D3: C=Carcinogen, M=Mutagenic, R=Reprotoxic, S=Sensitising, A=Aspiration hazard, T=Target organ systemic toxicity, L=Lunginjury, N=Neurotoxic, I=Immunotoxic. For column E1: NT=Not tainting (tested), T=Tainting test positive. For column E2: Fp=Persistent floater, F=Floater, S=Sinking substances. The numerical scales start from 0 (no hazard), while higher numbers reflect increasing hazard. (GESAMP/EHS Composite List of Hazard Profiles - Hazard evaluation of substances transported by ships)

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Ignitability characteristic: use EPA hazardous waste number D001 (waste code I)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- · Reduction
- · Reuse
- $\cdot \ \text{Recycling}$
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols: None Hazard class or Division: 3 Identification Numbers: UN2541 PG: III Label Codes: 3 Special provisions: B1, IB3,

T2, TP1

Packaging: Exceptions: 150 Packaging: Non- bulk: 203 Packaging: Exceptions: 150 Quantity limitations: 60 L

Passenger aircraft/rail:

Quantity Limitations: Cargo 220 L Vessel stowage: Location: A

aircraft only:

Vessel stowage: Other: None

Hazardous materials descriptions and proper shipping names:

Terpinolene

Air Transport IATA:

UN/ID Number: 2541 Packing Group: III

Special provisions: None

Cargo Only

Packing Instructions: 366 Maximum Qty/Pack: 220 L Passenger and Cargo Passenger and Cargo Packing Instructions: Y344 Maximum Qty/Pack: 60 L

Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity

Packing Instructions: 355 Maximum Qty/Pack: 10 L

Shipping Name: TERPINOLENE

Maritime Transport IMDG:
IMDG Class: 3 IMDG Subrisk: None
UN Number: 2541 Packing Group: III

EMS Number: F-E,S-E Special provisions: None Limited Quantities: 5 L Marine Pollutant: Yes

Shipping Name: TERPINOLENE

Section 15 - REGULATORY INFORMATION

terpinolene (CAS: 586-62-9) is found on the following regulatory lists;

"International Fragrance Association (IFRA) Survey: Transparency List", "US - New Jersey Right to Know Hazardous Substances", "US EPA High Production Volume Program Chemical List", "US Food Additive Database", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation, skin contact and/or ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- May produce discomfort of the eyes, respiratory tract and skin*.
- Repeated exposure potentially causes skin dryness and cracking*.
- * (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance CAS Suggested codes terpinolene 586- 62- 9 N; R50/53

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Nov-16-2008 Print Date: Aug-17-2011