Tetrabutylammonium cyanide

sc-237015

Material Safety Data Sheet

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Tetrabutylammonium cyanide

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Reagent for the synthesis of nitriles and in the preparation of complexes with CuCN; coupling agent. Regeant

C17-H36-N2, (CH3(CH2)3)4N(CN), "quaternary ammonium compound"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Contact with acids liberates very toxic gas.

Irritating to skin.
Risk of serious damage to eyes.

Very toxic by inhalation, in contact with skin and if swallowed.

May cause long-term adverse effects in the environment.

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Severely toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 5 gram may be fatal or may produce serious damage to the health of the individual.

 Cyanide poisoning can cause increased saliva output, nausea without vomiting, anxiety, confusion, vertigo, dizziness,
- stiffness of the lower jaw, convulsions, spasm, paralysis, coma and irregular heartbeat, and stimulation of breathing followed by failure. Often the skin becomes cyanosed (blue-gray), and this is often delayed. Doses which are not lethal are eventually excreted in the urine.
- Concentrated solutions of many cationics may cause corrosive damage to mucous membranes and the esophagus. Nausea and vomiting (sometimes bloody) may follow ingestion. Serious exposures may produce an immediate burning sensation of the mouth, throat and abdomen with profuse salivation, ulceration of mucous membranes, signs of circulatory shock (hypotension,

labored breathing, and cyanosis) and a feeling of apprehension, restlessness, confusion and weakness. Weak convulsive movements may precede central nervous system depression. Erosion, ulceration, and petechial hemorrhage may occur through the small intestine with glottic, brain and pulmonary edema. Death may result from asphyxiation due to paralysis of the muscles of respiration or cardiovascular collapse. Fatal poisoning may arise even when the only pathological signs are visceral congestion, swallowing, mild pulmonary edema or varying signs of gastrointestinal irritation. Individuals who survive a period of severe hypertension may develop kidney failure. Cloudy swelling, patchy necrosis and fatty infiltration in such visceral organs as the heart, liver and kidneys shows at death.

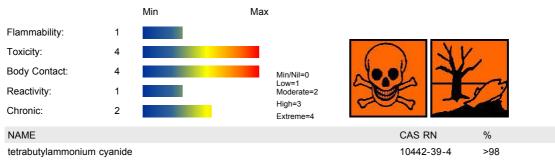
■ If applied to the eyes, this material causes severe eye damage.

SKIN

- Skin contact with the material may produce severely toxic effects; systemic effects may result following absorption and these may be fatal.
- This material can cause inflammation of the skin oncontact in some persons
- The material may accentuate any pre-existing dermatitis condition.
 Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

- Inhalation of dusts, generated by the material, during the course of normal handling, may produce severely toxic effects; these may be fatal.
- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS


■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Chronic exposure to cyanides and certain nitriles may result in interference to iodine uptake by thyroid gland and its consequent enlargement. This occurs following metabolic conversion of the cyanide moiety to thiocyanate. Thyroid insufficiency may also occur as a result of metabolic conversion of cyanides to the corresponding thiocyanate. Exposure to small amounts of cyanide compounds over long periods are reported to cause loss of appetite, headache, weakness, nausea, dizziness, abdominal pain, changes in taste and smell, muscle cramps, weight loss, flushing of the face, persistent runny nose and irritation of the upper respiratory tract and eyes. These symptoms are not specific to cyanide exposure and therefore the existence of a chronic cyanide toxicity remains speculative. Repeated minor contact with cyanides produce a characteristic rash with itching, papules (small, superficial raised spots on the skin) and possible sensitization. Concerns have been expressed that low-level, long term exposures may result in damage to the nerves of the eye.

Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following..

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

- IMPORTANT: ESTABLISH A FIRST AID PLAN BEFORE WORKING WITH CYANIDES. ANTIDOTES SHOULD BE AVAILABLE ON SITE.
- Prompt response in an emergency is vital.
- All workers are to be trained and refresher trained in procedures.
- Rescuers might need the protection of breathing apparatus where there is the potential of exposure to airborne cyanide.
- Use the buddy system and avoid becoming a casualty.

In all cases of cyanide exposure get medical help urgently after administering first aid. For cyanide poisonings by any route:

- Contact Poisons Advisory Center or a doctor.
- Seek immediate medical attention
- Place casualty in coma position.
- Give oxygen when available.
- Consider external cardiac compression, mechanical resuscitation and use of antidote kit.

If breathing stops mouth-to-mouth resuscitation (also called expired air resuscitation - EAR) may be given only as a last resort. Should such resort prove necessary, first wash the casualty's mouth and lips. A first aid attendant giving EAR must not inhale the expired air of the casualty. US Practice as employed by DuPont: - FIRST AID Swallowed/ Inhaled /Skin Contact

- If no symptoms, no treatment is necessary; decontaminate patient.
- If conscious but with symptoms present (nausea, shortness of breath, dizziness) give oxygen.
- If consciousness is impaired (slurred speech, drowsiness) give oxygen and amyl nitrite.
- If unconscious but breathing, give oxygen and amyl nitrite by means of a respirator. To give amyl nitrite, break an ampoule in a cloth and insert into lip of mask for 15 seconds, then take away for 15 seconds. Repeat 5-6 times.

First Aid Supplies for cyanide poisoning should be conveniently placed throughout cyanide areas and should be IMMEDIATELY accessible at all times. They should be routinely inspected (typically daily) by people who would use them in an emergency. The total numbers of any item listed below should be adequate to handle the largest number of exposure cases that can reasonably be anticipated, taking into account that some supplies may be wasted, destroyed or inaccessible during an emergency. Oxygen Resuscitators - The Flynn Series III Model from O-Two Systems has been found satisfactory, being

lightweight, rugged and easy to use. Amyl Nitrite Ampoules - One box of one dozen ampoules per station is usually satisfactory. Stations should be located throughout the cyanide area. CAUTION: Amyl nitrite is not stable and must be replaced every 1 to 2 years. Store in the original dated box away from heat. (can be stored with the resuscitator). Avoid storage on vehicles where cabin temperatures can reach 60 deg. C. Storage in high temperature climates may require replacement before the expiry date on the box. Also avoid excessive cold storage which may limit the vapor pressure and reduce its evaporating property. Kits and amyl nitrite should be accessible, but secured against tampering or theft (an increase in the use of nitrite "poppers", as aphrodisiacs, introduces substance abuse concerns). A set of cyanide first aid instructions should be located at each amyl nitrite storage location. Workers should be fully trained since in real emergency situations there will be insufficient time to "read the book". Notes on the use of amyl nitrite:-

- AN is highly volatile and flammable do not smoke or use around a source of ignition.
- If treating patient in a windy or draughty area provide some shelter or protection (shirt, wall, drum, cupped hand etc.) to prevent amyl nitrite vapor from being blown away. Keep ampoule upwind from the nose, the objective is to get amyl nitrite into the patient's lungs
- Rescuers should avoid AN inhalation to avoid becoming dizzy and losing competence.
- Lay the patient down. Since AN dilates blood vessels and lowers blood pressure, lying down will help keep the patient conscious
- DO NOT overuse excessive use might put the patient into shock.
- Vasodilatory effects of amyl nitrate may promote fatal cardiac arrhythmias (particularly if the patient is not really poisoned by
- the role of amyl nitrate as a competitive inducer of methemoglobin in the blood stream is highly variable and, alone, may produce levels of methemoglobin as a low as 5% only.

Experience at DuPont plants has not shown any serious after-effects from treatment with amyl nitrite.

EYE

■ If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

■ If skin or hair contact occurs:

- Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.
- Transport to hospital, or doctor.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

- Signs symptoms of acute cyanide poisoning reflect cellular hypoxia and are often non-specific.
- Cyanosis may be a late finding.
- A bradycardia, hypertensive and tachypneic patient suggests poisoning especially if CNS and c ardiovascular depression
- Immediate attention should be directed towards assisted ventilation, administration of 100% oxygen, insertion of intravenous lines and institution of cardiac monitoring.
- Obtain an arterial blood gas immediately and correct any severe metabolic acidosis (pH below 7.15).
- Mildly symptomatic patients generally require supportive care alone. Nitrites should not be given indiscriminately in all cases of moderate to severe poisoning, they should be given in conjunction with thiosulfate. As a temporizing measure supply amyl nitrite perles (0.2ml inhaled 30 seconds every minute) until intravenous lines for sodium nitrite are established. 10 ml of a 3% solution is administered over 4 minutes to produce 20% methemoglobin in adults. Follow directly with 50 ml of 25% sodium thiosulfate, at the same rate, IV. If symptoms reappear or persist within 1/2-1 hour, repeat nitrite and thiosulfate at 50% of initial dose. As the mode of action involves the metabolic conversion of the thiosulfate to thiocyanate, renal failure may enhance thiocyanate toxicity.
- Methylene blue is not an antidote. [Ellenhorn and Barceloux: Medical Toxicology]

If amyl nitrite intervention is employed then Medical Treatment Kits should contain the following:

- One box containing one dozen amyl nitrite ampoules
- Two sterile ampoules of sodium nitrite solution (10 mL of a 3% solution in each)
- Two sterile ampoules of sodium thiosulfate solution (50 mL of a 25% solution in each)
- One 10 mL sterile syringe. One 50 mL sterile syringe. Two sterile intravenous needles. One tourniquet.
- One dozen gauze pads.
- Latex gloves
- A "Biohazard" bag for disposal of bloody/contaminated equipment.
- A set of cyanide instructions on first aid and medical treatment.
- Notes on the use of amyl nitrite:-
- · AN is highly volatile and flammable do not smoke or use around a source of ignition.
- If treating patient in a windy or draughty area provide some shelter or protection (shirt, wall, drum, cupped hand etc.) to prevent amyl nitrite vapor from being blown away. Keep ampoule upwind from the nose, the objective is to get amyl nitrite into the patient's lungs.
- Rescuers should avoid AN inhalation to avoid becoming dizzy and losing competence.
- Lay the patient down. Since AN dilates blood vessels and lowers blood pressure, lying down will help keep patient conscious.
- DO NOT overuse excessive use might put the patient into shock. Experience at DuPont plants has not shown any serious after-effects from treatment with amyl nitrite.

ADDITIONAL NOTES:

Major medical treatment procedures may vary e.g. US (FDA method as recommended by DuPont) uses amyl nitrite as a
methemoglobin generator, followed by treatment with sodium nitrite and then sodium thiosulfate.
 MODES OF ACTION: Amyl nitrite (AN) reacts with hemoglobin (HB) to form about 5% methemoglobin (MHB). Sodium nitrite

(NaNO2) reacts with hemoglobin to form approximately 20-30% methemoglobin. Methemoglobin attracts cyanide ions (CN) from tissue and binds with them to become cyanmethemoglobin (CNMHB). Sodium thiosulfate (Na2S2O3) converts cyanmethemoglobin to thiocyanate (HSCN) which is excreted by the kidneys. i.e. AN + HB = MHB NaNO2 + HB = MHB CN +

· The administration of the antidote salts is intravenous in normal saline, Ringers lactate or other available IV fluid.

Section 5 - FIRE FIGHTING MEASURES				
Vapour Pressure (mmHG):	Negligible			
Upper Explosive Limit (%):	Not available			
Specific Gravity (water=1):	Not available			
Lower Explosive Limit (%):	Not available			

EXTINGUISHING MEDIA

- for inorganic cyanides
- DO NOT USE CARBON DIOXIDE as reaction may produce hydrogen cyanide
- Extinguish fires with water spray or fog; reaction may produce hydrogen cyanide exhibit extreme caution
- · Do NOT use straight stream of water
- Most foams will react with inorganic cyanides and release toxic and corrosive fumes.
- For small fires use dry (non-acidic) chemical extinguishers or dry sand

FIRE FIGHTING

.

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- · Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- · Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- · Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
 mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
 fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- · Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

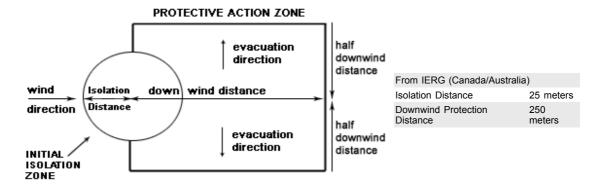
■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result

PERSONAL PROTECTION

Glasses: Full face- shield. Gloves: Respirator:

Type A-P Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES


MINOR SPILLS

- Environmental hazard contain spillage.
- · Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

- Environmental hazard contain spillage.
- · Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- · Collect recoverable product into labeled containers for recycling.
- Neutralize/decontaminate residue.
- · Collect solid residues and seal in labeled drums for disposal.
- · Wash area and prevent runoff into drains.
- · After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder. 5 Guide 154 is taken from the US DOT emergency response guide book. 6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

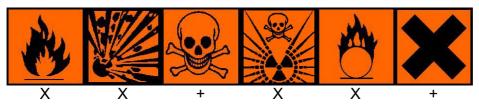
RECOMMENDED STORAGE METHODS

- Glass container.
- Lined metal can, Lined metal pail/drum
- Plastic pail
- Polyliner drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):


- Removable head packaging;
- Cans with friction closures and
- low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning

material in contact with inner and outer packages * . - In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *. - * unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic. All inner and sole packagings for substances that have been assigned to Packaging Groups I or II on the basis of inhalation toxicity criteria, must be hermetically

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material		TWA mg/m³		STEL mg/m³		Peak mg/m³		Notes
US - Idaho - Limits for Air Contaminants	tetrabutylammonium cyanide (Cyanides (as CN))		5						
US - California Permissible Exposure Limits for Chemical Contaminants	tetrabutylammonium cyanide (Cyanide, as CN)		5						
US - Minnesota Permissible Exposure Limits (PELs)	tetrabutylammonium cyanide (Cyanides (as CN))			5					
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	tetrabutylammonium cyanide (Cyanides (as CN))		5						
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants	tetrabutylammonium cyanide (Cyanides (as CN))		5						
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	tetrabutylammonium cyanide (Cyanides (as CN))		5						
US OSHA Permissible Exposure Levels (PELs) - Table Z1	tetrabutylammonium cyanide (Cyanides (as CN))		5						
US - Alaska Limits for Air Contaminants	tetrabutylammonium cyanide (Cyanides (as CN))		5						
US - Hawaii Air Contaminant Limits	tetrabutylammonium cyanide (Cyanides (as CN))		5						(CAS (Varies with compound))
US - Washington Permissible exposure limits of air contaminants	tetrabutylammonium cyanide (Cyanide (as CN))		5		10				
Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)	tetrabutylammonium cyanide (Cyanides (as CN))					10	11		
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	tetrabutylammonium cyanide (Cyanides (as CN))		5						
US - Oregon Permissible Exposure Limits (Z1)	tetrabutylammonium cyanide (Cyanides (as CN))		5						
EMERGENCY EXPOSURE LIMITS									
Material	Revised IDLH Value	(mg/m	3)		Revis	ed IDL	H Value	(ppm)	
tetrabutylammonium cyanide	25								

MATERIAL DATA TETRABUTYLAMMONIUM CYANIDE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in

animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply. Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

NOTE: Detector tubes for cyanides, measuring CN in excess of 2mg are commercially available.

Exposure limits with "skin" notation indicate that vapor and liquid may be absorbed through intact skin. Absorption by skin may readily exceed vapor inhalation exposure. Symptoms for skin absorption are the same as for inhalation. Contact with eyes and mucous membranes may also contribute to overall exposure and may also invalidate the exposure standard.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Chemical goggles.
- Full face shield.
- Contact lenses pose a special hazard; soft contact lenses may absorb irritants and all lenses concentrate them.

■ Elbow length PVC gloves.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material.
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- Evewash unit.
- Barrier cream.
- Skin cleansing cream.

Approved cyanide Antidote Kit.

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.

 Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

•			
Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	A P1	-	A PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	A P2 A	PAPR-P2
100 x PEL	-	A P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	A PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes: Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g.

asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- · Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture

velocities" of fresh circulating air required to efficiently remove	the contaminant.
Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity

4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are

3: High production, heavy use

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

3: Intermittent, low production.

Solid

Mixes with water

installed or used.

Contact with acids liberates very toxic gas.

State	Divided solid	Molecular Weight	268.49
Melting Range (°F)	192.2- 197.6	Viscosity	Not Applicable
Boiling Range (°F)	Not applicable.	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not available	pH (1% solution)	Not available
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

White to off-white powder; mixes with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable

· Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Contact with acids produces toxic fumes
- Metal cyanides are readily oxidised and those of some heavy metals show thermal instability.
- Metal cyanide and cyanates are often endothermic, Several members of this family of compounds, containing heavy metals tend to explosive instability, and most are capable of violent oxidation under certain circumstances
- Fusion of mixtures of metal cyanides with metal chlorates, perchlorates, nitrates or nitrites cause violent explosion.
- Magnesium reacts with incandescence on heating with several metal cyanides; release of cyanogen by thermal decomposition may cause vigorous reaction with magnesium.
- Addition of one solid component (even in residual amounts) to another molten component is extremely dangerous.

BRETHERICK L.: Handbook of Reactive Chemical Hazards.

Segregate from alcohol, water.
Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

tetrabutylammonium cyanide

TOXICITY AND IRRITATION

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- Most undiluted cationic surfactants satisfy the criteria for classification as Harmful (Xn) with R22 and as Irritant (Xi) for skin and eves with R38 and R41.

For quaternary ammonium compounds (QACs):

Quaternary ammonium compounds (QACs) are cationic surfactants. They are synthetic organically tetra-substituted ammonium compounds, where the R substituents are alkyl or heterocyclic radicals. A common characteristic of these synthetic compounds is that one of the R's is a long-chain hydrophobic aliphatic residue

The cationic surface active compounds are in general more toxic than the anionic and non-ionic surfactants. The positively-charged cationic portion is the functional part of the molecule and the local irritation effects of QACs appear to result from the

quaternary ammonium cation.

Due to their relative ability to solubilise phospholipids and cholesterol in lipid membranes, QACs affect cell permeability which may lead to cell death. Further QACs denature proteins as cationic materials precipitate protein and are accompanied by generalised tissue irritation

It has been suggested that the experimentally determined decrease in acute toxicity of QACs with chain lengths above C16 is due to decreased water solubility.

In general it appears that QACs with a single long-chain alkyl groups are more toxic and irritating than those with two such

The straight chain aliphatic QACs have been shown to release histamine from minced guinea pig lung tissue However, studies with benzalkonium chloride have shown that the effect on histamine release depends on the concentration of the solution. When cell suspensions (11% mast cells) from rats were exposed to low concentrations, a decrease in histamine release was

seen. When exposed to high concentrations the opposite result was obtained.

In addition, QACs may show curare-like properties (specifically benzalkonium and cetylpyridinium derivatives, a muscular paralysis with no involvement of the central nervous system. This is most often associated with lethal doses Parenteral injections in rats, rabbits and dogs have resulted in prompt but transient limb paralysis and sometimes fatal paresis of the respiratory muscles. This effect seems to be transient.

From human testing of different QACs the generalised conclusion is obtained that all the compounds investigated to date exhibit similar toxicological properties.

Acute toxicity: Studies in rats have indicated poor intestinal absorption of QACs. Acute toxicity of QACs varies with the compound and, especially, the route of administration. For some substances the LD50 value is several hundreds times lower by the i.p. or i.v. than the oral route, whereas toxicities between the congeners only differ in the range of two to five times

At least some QACs are significantly more toxic in 50% dimethyl sulfoxide than in plain water when given orally

Probably all common QAC derivatives produce similar toxic reactions, but as tested in laboratory animals the oral mean lethal

dose varies with the compound.

Oral toxicity: LD50 values for QACs have been reported within the range of 250-1000 mg/kg for rats, 150-1000 mg/kg for mice, 150-300 mg/kg for guinea pigs and about 500 mg/kg b.w. for rabbits and dogs. The ranges observed reflect differences in the study designs of these rather old experiments as well as differences between the various QACs.

The oral route of administration was characterised by delayed deaths, gastrointestinal lesions and respiratory and central nervous system depression. It was also found that given into a full stomach, the QACs lead to lower mortality and fewer gastrointestinal symptoms. This support the suggestion of an irritating effect

Dermal toxicity: It has been concluded that the maximum concentration that did not produce irritating effect on intact skin is 0.1%. Irritation became manifest in the 1-10% range. Concentrations below 0.1% have caused irritation in persons with contact dermatitis or broken skin.

Although the absorption of QACs through normal skin probably is of less importance than by other routes, studies with excised guinea pig skin have shown that the permeability constants strongly depends on the exposure time and type of skin Sensitisation: Topical mucosal application of QACs may produce sensitisation. Reports on case stories and patch test have

shown that compounds such as benzalkonium chloride, cetalkonium chloride and cetrimide may possibly act as sensitisers. However, in general it is suggested that QACs have a low potential for sensitising man It is difficult to distinguish between an allergic and an irritative skin reaction due to the inherent skin irritating effect of QACs.

Long term/repeated exposure:

Inhalation: A group of 196 farmers (with or without respiratory symptoms) were evaluated for the relationship between exposure to QACs (unspecified, exposure levels not given) and respiratory disorders by testing for lung function and bronchial responsiveness to histamine. After histamine provocation statistically significant associations were found between the prevalence of mild bronchial responsiveness (including asthma-like symptoms) and the use of QACs as disinfectant. The association seems even stronger in people without respiratory symptoms.

Genetic toxicity: QACs have been investigated for mutagenicity in microbial test systems. In Ames tests using Salmonella typhimurium with and without metabolic activation no signs of mutagenicity has been observed. Negative results were also

obtained in E. coli reversion and B. subtilis rec assays. However, for benzalkonium chloride also positive and equivocal results

were seen in the B. subtilis rec assays. No significant acute toxicological data identified in literature search.

SKIN

OIXIII			
tetrabutylammonium cyanide	US - Washington Permissible exposure limits of air contaminants - Skin	Skin	X
tetrabutylammonium cyanide	US - Hawaii Air Contaminant Limits - Skin Designation	Skin Designation	Х
tetrabutylammonium cyanide	US OSHA Permissible Exposure Levels (PELs) - Skin	Skin Designation	X

totrobutylommonium LIC California Darmianible Evangura Limita for Chamical Contaminante

cyanide	05 - Camornia Permissible Exposure Limits for Chemical Contaminants - Skin	Skin	Х
tetrabutylammonium cyanide	US - California Permissible Exposure Limits for Chemical Contaminants - Skin	Skin	S

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: TETRABUTYLAMMONIUM CYANIDE:

- On the basis of available evidence concerning either toxicity, persistence, potential to accumulate and or observed environmental fate and behaviour, the material may present a danger, immediate or long-term and /or delayed, to the structure and/ or functioning of natural ecosystems.
- Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

■ For cationic surfactants:

Environmental fate:

Although cationic surfactants will sorb onto sludge particles and eventually reach the digester during the treatment of wastewater sludge, there is very limited information about the biodegradability of these compounds under anoxic conditions. It has been demonstrated, however, that the concentration of quaternary ammonium salts does not decrease, or only slightly decreases, in an anaerobic digester.

The numerous studies of aquatic toxicity, many of which were conducted in natural waters with and without added effluents, indicate that the source and composition of the test water dramatically affects the toxicity of the test substance. These results are consistent with the known behavior of these materials in the environment. Cationic substances in the environment instantaneously form complexes with naturally occurring negatively charged constituents in sewage, soils, sediments, and with dissolved humic substances in surface waters. This complexation behavior results in reduced bioavailability in actual environmental conditions that is not adequately represented by standard laboratory assays and/or predictions by various QSAR

Ecotoxicity

Algae constitute a group of organisms which appears to be very sensitive to cationic surfactants.

■ The alkali metal cyanides (and other metal cyanides) are very soluble in water. As a result, they readily dissociate into their respective anions and cations when released into water. Depending on the pH of the water, the resulting cyanide ion may then form hydrogen cyanide or react with various metals in natural water. The proportion of hydrogen cyanide formed from soluble cyanides increases as the water pH decreases. At pH <7, >99% of the cyanide ions in water are converted to hydrogen cyanide. As the pH increases, cyanide ions in the water may form complex metallocyanides in the presence of excess cyanides; however, if metals are prevalent, simple metal cyanides are formed. Volatilization is the dominant mechanism for the removal of free cyanide. At pH >9.2, most of the free cyanide should exist as HCN, a volatile form of cyanide. Wide variations in the rate of volatilization are expected since this process is affected by a number of parameters such as temperature, pH, wind speed, and cyanide concentration. Volatilization of free cyanide from concentrated solutions is most effective under conditions of high temperatures, high dissolved oxygen levels, and at increased concentrations of atmospheric carbon dioxide Unlike water-soluble alkali metal cyanides, insoluble metal cyanides are not expected to degrade to hydrogen cyanide. Cyanide occurs most commonly as hydrogen cyanide in water, although it can also occur as the cyanide ion, alkali and alkaline earth metal cyanides (potassium cyanide, sodium cyanide, calcium cyanide), relatively stable metallocyanide complexes (ferricyanide complex [Fe(CN)6]-3), moderately stable metallocyanide complexes (complex nickel and copper cyanide), or easily decomposable metallocyanide complexes (zinc cyanide [Zan(CN)2], cadmium cyanide [Cd(CN)2]). Oxidation, hydrolysis, and photolysis (photodegradation) are the three predominant chemical processes that may cause loss of simple cyanides in aquatic

Certain cyanides are oxidised to isocyanates by strong oxidising agents; the isocyanates may be further hydrolysed to ammonia and carbon dioxide. However, it has not yet been determined whether such oxidation and subsequent hydrolysis of isocyanate is a significant fate process in natural waters known to contain peroxy radicals. In water, hydrogen cyanide and cyanide ion exist in equilibrium with their relative concentrations primarily dependent on pH and temperature. At pH <8, >93% of the free cyanide in water will exist as undissociated hydrogen cyanide. Hydrogen cyanide can be hydrolysed to formamide, which is subsequently hydrolysed to ammonium and formate ions. However, the relatively slow rates of hydrolysis reported for hydrogen cyanide in acidic solution and of cyanides under alkaline conditions indicate that hydrolysis is not competitive with volatilisation and biodegradation for removal of free cyanide from ambient waters At pH <9.2, most of the free cyanide in solution should exist as hydrogen cyanide, a volatile cyanide form. On the basis of Henry's law constant and the volatility characteristics associated with various ranges of Henry's law constant, volatilization is a significant and probably dominant fate process for hydrogen cyanide in surface water. The most common alkali metal cyanides (e.g., sodium and potassium cyanide) may also be lost from surface water primarily through volatilization; whereas, the sparingly soluble metal cyanides such as copper (I) cyanide are removed from water predominantly by sedimentation and biodegradation. Because volatilisation is not an important fate process for cyanide in groundwater, cyanide would be expected to persist for considerably longer periods of time in underground aquifers than in surface water.

The significance of photolysis in the fate of cyanides in water has not been fully investigated. Hydrogen cyanide and cyanide ions in aqueous solution have been found to be very resistant to photolysis by natural sunlight, except under heterogeneous photocatalytic conditions. Photocatalytic oxidation may not be significant in natural waters, however, because of significant light reduction at increasingly greater depths. In clear water or at water surfaces, some metallocyanides, such as ferrocyanides and ferricyanides, may decompose to the cyanide ion by photodissociation and subsequently form hydrogen cyanide.

Biodegradation is an important transformation process for cyanide in natural surface waters, and is dependent on such factors as cyanide concentrations, pH, temperature, availability of nutrients, and acclimation of microbes. Although the cyanide ion is toxic to microorganisms at concentrations as low as 5-10 mg/L, acclimation increases tolerance to this compound. Mixed microorganisms in sewage sludge or activated sludge acclimated to cyanide also significantly biodegrade concentrations <=100 mg/L of most simple and complex cyanides. It is known that there is a natural attentuation of the cyanide ion and thiocyanide concentrations in waste waters, for example those obtained gold mill tails, that is due the acclimation of indigenous microflora in the tailings. A number of microorganisms have been identified that are capable of uptake, conversion, sorption, and/or precipitation of the cyanide ion, cyanate, and thiocyanate, including species of the genera, Actinomyces, Alcaligenes, Arthrobacter, Bacillus, Micrococcus, Neisseria, Paracoccus, Pseudomonas, and Thiobacillus. Some of these species, for example Pseudomonas, are capable of using the cyanide ion and thiocyanate as the sole source of carbon and nitrogen and therefore, are particularly effective at cyanide degradation. In fact, Pseudomonas is the basis of commercial applications for degrading the cyanide ion to ammonia and carbonate in waste waters generated in mining operations that use the cyanide ion to leach gold and other precious metals for low-grade ores. Sulfur transferases such as rhodanese are involved in substitution reactions that result in the conversion of the cyanide ion to the less toxic thiocyanate, whereas pyridoxal phosphate enzymes are involved in substitution/addition reactions that result in production of nitrile derivatives of a-amino acids. These organic nitriles may then be ultimately degraded via enzyme catalysed hydrolysis to either the corresponding amino acid and ammonia or the carboxylic acid and ammonia. The cyanide hydratase and cyanidase enzymes catalyse the hydrolysis of the cyanide ion to formamide or formic acid and ammonia, respectively In soil, cyanide present at low concentrations would biodegrade under aerobic conditions with the initial formation of ammonia, which would be converted to nitrite and nitrate in the presence of nitrifying bacteria. Under anaerobic conditions, the cyanides ion will denitrify to gaseous nitrogen. Upper limits of 200 and 2 ppm (mg/kg CN-), respectively, have been reported for uninhibited aerobic and anaerobic biodegradation of cyanide in soil; however, these limits have not been confirmed in other studies. Cyanide ions in soil are not involved in oxidation-reduction reactions but may undergo complexation reactions with metal ions in soil

Cyanides are sorbed by various natural media, including clays, biological solids and sediments Hydrogen cyanide and the alkali

metal cyanides are not likely to be strongly sorbed onto sediments and suspended solids because of their high water solubilities. Soluble metal cyanides may show somewhat stronger sorption than hydrogen cyanide, with the extent of sorption increasing with decreasing pH and increasing iron oxide, clay, and organic material contents of sediment and suspended solids. However, sorption is probably insignificant even for metal cyanides when compared to volatilisation and biodegradation. Cyanides are fairly mobile in soil. Mobility is lowest in soils with low pH and high concentrations of free iron oxides, positively charged particles, and clays (e.g., chlorite, kaolin, gibbsite), and highest in soils with high pH, high concentrations of free CaCO3 and negatively charged particles, and low clay content. Although cyanide has a low soil sorption capability, it is usually not detected in groundwater, probably because of fixation by trace metals through complexation or transformation by soil microorganisms. In soils where cyanide levels are high enough to be toxic to microorganisms (i.e., landfills, spills), this compound may leach into groundwater. Leaching of cyanide into a shallow aquifer has been demonstrated. Volatilisation of hydrogen cyanide would be a significant loss mechanism for cyanides from soil surfaces at a pH <9.2.

Most cyanide in the atmosphere exists almost entirely as hydrogen cyanide gas, although small amounts of metal cyanides may be present as particulate matter in the air. Hydrogen cyanide is very resistant to photolysis at wavelengths of normal sunlight. The most important reaction of hydrogen cyanide in air is the reaction with photochemically-generated hydroxyl radicals and subsequent rapid oxidation to carbon monoxide (CO) and nitric oxide (NO); photolysis and reaction with ozone are not important transformation processes, and reaction with singlet oxygen is not a significant transformation process except at stratospheric altitudes where singlet oxygen is present in significant concentrations. The rate of hydroxyl radical reaction with hydrogen cyanide in the atmosphere depends on the altitude, and the rate of the reaction is at least an order of magnitude faster at lower tropospheric altitudes (0-8 km) than at upper tropospheric altitudes (10-12 km). Based on a reaction rate constant of 3x10-14 cm3/(molecule-sec) at 25 °C and assuming an average hydroxyl radical concentration of 5x105 molecules/cm3, the residence time for the reaction of hydrogen cyanide vapor with hydroxyl radicals in the atmosphere is approximately 2 years

There is some evidence that certain metal cyanide complexes bioaccumulate in aquatic organisms. Fish from water with soluble silver and copper cyanide complexes were found to have metal cyanides in their tissues at concentrations ranging up to 168 and 304 µg/g, respectively (wet or dry weight not specified). It is difficult to evaluate the toxicologic significance of bioaccumulation of metal cyanide complexes because these compounds are much less toxic than soluble hydrogen cyanide, sodium cyanide, or potassium cyanide. There is no evidence of biomagnification of cyanides in the food chain. Accumulation of cyanide in food webs is not expected, considering the rapid detoxification of cyanide by most species and the lethal effects of large doses of cyanide.

■ Soil Guidelines: Dutch Criteria:

free cyanide: 1 mg/kg (target)

20 mg/kg (intervention)

complex cyanide (pH 5): 5 mg/kg (target)

50 mg/kg (intervention)

Air Quality Standards: no safe guidelines recommended due to carcinogenic properties.

DO NOT discharge into sewer or waterways.

For quaternary ammonium compounds (QACs):

QACs are white, crystalline powders. Low molecular weight QACs are very soluble in water, but slightly or not at all soluble in solvents such as ether, petrol and benzene. As the molecular weight and chain lengths increases, the solubility in polar solvents (e.g. water) decreases and the solubility in non-polar solvents increases. Environmental fate

A major part of the QACs is discharged into wastewater and removed in the biological processes of sewage treatment plant. A 90% reduction of the QACs in the water phase of sludge has been reported and alkyl di-/ trimethyl ammonium and alkyl dimethyl benzyl ammonium compounds seem almost completely degraded in sewage sludge.

However, the aerobic and anaerobic biodegradability of QACs is not well investigated. Only sparse data are available concerning stability, solubility and biodegradability. In general, it seems that the biodegradability decreases with increasing numbers of alkyl chains: R(CH3)3N+ > R2(CH3)2N+ > R3(CH3)N+ . Within each category the biodegradability seems inversely proportional to the alkyl chain length. Heterocyclic QACs are less degradable than the non-cyclic.

Investigations have shown that bioaccumulation of considerable dimensions will probably not take place. Ecotoxicity:

Quaternary ammonium compounds and their polymers may be highly toxic to fish and other aquatic organisms. The toxicity of the quaternary ammoniums is known to be greatly reduced in the environment because of preferential binding to dissolved organics in surface water.

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Reactivity characteristic: use EPA hazardous waste number D003 (waste code R).

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Care must be taken when using hypochlorite solution to destroy cyanidewastes by oxidation to cyanates.
- The reaction proceeds readily, even at high pH, but the secondaryoxidation of cyanate to nitrogen and carbon dioxide is very pH dependent.
- At pH 11 it is slow but runs-away at pH 10-10.3. This procedure shouldavoid high pHs, excess of hypochlorite, and moderate or highconcentrations of the hypochlorite.
- Addition of 0.5 ml of cyanide solution to 5 ml of stirred hypochloritedestroyed a gas meter with the violent evolution of gas. BRETHERICK L.: Handbook of Reactive Chemical Hazards.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Symbols:	None	Hazard class or Division:	6.1
Identification Numbers:	UN2811	PG:	II
Label Codes:	6.1	Special provisions:	IB8, IP2, IP4, T3, TP33
Packaging: Exceptions:	153	Packaging: Non-bulk:	212
Packaging: Exceptions:	153	Quantity limitations: Passenger aircraft/rail:	25 kg
Quantity Limitations: Cargo aircraft only:	100 kg	Vessel stowage: Location:	В
Vessel stowage: Other:	None	S.M.P.:	YES
Hazardous materials descriptio Toxic solids, organic, n.o.s. Air Transport IATA:	ns and proper shipping names:		
ICAO/IATA Class:	6.1	ICAO/IATA Subrisk:	None
UN/ID Number:	2811	Packing Group:	II

Shipping Name: TOXIC SOLID, ORGANIC, N.O.S. *(CONTAINS TETRABUTYLAMMONIUM CYANIDE)

Maritime Transport IMDG:

Special provisions:

IMDG Class:	6.1	IMDG Subrisk:	None
UN Number:	2811	Packing Group:	II
EMS Number:	F-A,S-A	Special provisions:	274

Limited Quantities:

Shipping Name: TOXIC SOLID, ORGANIC, N.O.S.(contains tetrabutylammonium cyanide)

А3

Section 15 - REGULATORY INFORMATION

tetrabutylammonium cyanide (CAS: 10442-39-4) is found on the following regulatory lists;

"Canada Non-Domestic Substances List (NDSL)", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Apr-11-2009 Print Date:Apr-22-2010