# 2-Chlorophenylhydrazine hydrochloride



### Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

#### PRODUCT NAME

2-Chlorophenylhydrazine hydrochloride

#### STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.



#### SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 **EMERGENCY:** ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

#### SYNONYMS

C6-H7-CI-N2, CIC6H4NHNH2.HCI, "hydrazine, 2-chlorophenyl, hydrochloride", "phenylhydrazine, 2-chloro-, hydrochloride"

#### **CHEMWATCH HAZARD RATINGS** Min Max Flammability: 1 Toxicity: 2 Min/Nil=0 Body Contact: 2 Low=1 Moderate=2 Reactivity: 1 High=3 Chronic: 2 Extreme=4

## Section 2 - HAZARDS IDENTIFICATION

### **CANADIAN WHMIS SYMBOLS**



#### **EMERGENCY OVERVIEW**

#### RISK

May cause SENSITISATION by skin contact. Limited evidence of a carcinogenic effect. Harmful in contact with skin and if swallowed. Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

#### POTENTIAL HEALTH EFFECTS

#### **ACUTE HEALTH EFFECTS**

#### **SWALLOWED**

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Hydrazine (and some of its derivatives), is a strong convulsant in laboratory animals and can cause central nervous system (CNS) depression or stimulation.

Symptoms of CNS depression may include nonspecific discomfort, giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness.

#### EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn).

Slight abrasive damage may also result.

#### SKIN

Skin contact with the material may be harmful; systemic effects may resultfollowing absorption.

The material is not thought to be a skin irritant (as classified using animal models).

Abrasive damage however, may result from prolonged exposures.

Open cuts, abraded or irritated skin should not be exposed to this material.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

#### INHALED

The material is not thought to produce respiratory irritation (as classified using animal models).

Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.

■ Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

Symptoms of inhalation of hydrazine (and some of its derivatives), may include nausea and headache.

Central nervous system (CNS) excitability may lead to convulsions and, in severe cases, respiratory arrest and death.

#### CHRONIC HEALTH EFFECTS

There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment.

Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Phenylhydrazines are capable of exerting haemolytic effects following a haemoglobin-catalysed metabolic conversion. This haemolytic effect is a consequence of the formation of free radicals in which phenylhydrazine undergoes oxidation to a phenyl diazinyl radical intermediate and subsequent conversion to a phenyl radical (and nitrogen, N2).

Oxygen activation (generation of a superoxide) occurs during one of the reactions of this metabolic sequence. Superoxide is a strong base and can therefore attract protons from a variety of compounds; it is also a potent reducing agent which can reduce transition metal ions (such as Fe3+ and Cu+) to their reduced form Superoxide may also act as a nucleophile and may readily react with a number of electrophilic agents. Finally superoxide may initiate oxidation reactions, for example, of molecules such as ascorbic acid or epinephrine (adrenaline) following hydrogen abstraction due to its basicity.

Under certain conditions the rate of formation of reactive oxygen species may exceed the capacity of the bodies auto-oxidative defence mechanisms and, as a result, result in "oxidative stress". Oxidative stress appears to be involved in some biological processes such as aging and inflammation reactions and is thought to play a role in the pathogenesis of several diseases, including acute pancreatitis, post-ischaemic syndrome,tumour formation, atherosclerosis and diabetic angiopathy.

Free radicals can react with specific cellular molecules including low molecular weight biomolecules such as neurotransmitters and co-enzymes and, as a consequence, inactivate them. macromolecules and cellular membranes are particularly vulnerable to free radical damage with the resultant loss of physiological function and cell death Depolymerisation of polysaccharides (such as hyaluronic acid) may result in inflammation of the joints.

Free radicals have a high affinity for sulfur containing amino-acids and therefore many proteins. The may bind covalently to these

proteins leading to loss, of biological function such as catalysis exhibited by enzymes. Covalent binding may also result in allergic reactions when the modified protein is recognised, by the bodies immune system, as "foreign" Free radicals are also capable of causing proteins to cross-link to yield larger aggregates.

Free radicals are also able to react with the nucleic acids of DNA which may affect cell division or cell death Oxidative modifications of DNA may result in tumour initiation.

Lipids containing several double bonds (such as polyunsaturated fatty acids and cholesterol) are also subject to damage. In the case of membrane phospholipids, such "peroxidation" results in impairment of cellular and/ or subcellular membranes which may produce cell death. Transition metal ions may also play an important role in lipid peroxidation after free radical-induced change of valency . Fe3+/Fe2+, copper and mercury ions, as well as vanadate and chromate ions seem to initiate this process and may even exacerbate it by producing secondary radicals when the phospholipid is modified.

When administered orally, hydrazine induced pulmonary adenomas and adenocarcinomas in mice. Inhalation induced lung carcinomas and lymphosarcomas of the spleen in female mice. A study of 423 men, involved in the manufacture of hydrazine revealed three stomach, one prostate and a neurogenic cancer.

| Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS |            |     |  |  |  |
|------------------------------------------------------|------------|-----|--|--|--|
| NAME                                                 | CAS RN     | %   |  |  |  |
| 2-chlorophenylhydrazine hydrochloride                | 41052-75-9 | >98 |  |  |  |

### **Section 4 - FIRST AID MEASURES**

#### SWALLOWED

· IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. · Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

#### EYE

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

#### SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

#### INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

#### NOTES TO PHYSICIAN

Treat symptomatically.

In poisonings involving hydrazine:

Correction of early hypoglycaemia, with large parenteral doses of pyridoxine appears to suppress convulsions and other neurological effects.

In man, hydrazine-induced hyperexcitability and coma may respond to massive doses of pyridoxine but there is no evidence that liver necrosis or damage can be prevented or corrected by this antidote.

GOSSELIN, SMITH & HODGE: Clinical Toxicology of Commercial Products, 5 th Ed.

### Section 5 - FIRE FIGHTING MEASURES

| Vapour Pressure (mmHG):     | Negligible     |
|-----------------------------|----------------|
| Upper Explosive Limit (%):  | Not available. |
| Specific Gravity (water=1): | Not available  |
| Lower Explosive Limit (%):  | Not available  |

#### **EXTINGUISHING MEDIA**

· Water spray or fog.

· Foam.

#### FIRE FIGHTING

· Alert Emergency Responders and tell them location and nature of hazard.

· Wear breathing apparatus plus protective gloves.

When any large container (including road and rail tankers) is involved in a fire,

consider evacuation by 100 metres in all directions.

#### **GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS**

· Combustible solid which burns but propagates flame with difficulty.

• Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other

pyrolysis products typical of burning organic material. FIRE INCOMPATIBILITY

Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

#### PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: Respirator: Particulate

### Section 6 - ACCIDENTAL RELEASE MEASURES

#### MINOR SPILLS

 $\cdot$  Clean up waste regularly and abnormal spills immediately.

- · Avoid breathing dust and contact with skin and eves.
- · Wear protective clothing, gloves, safety glasses and dust respirator.
- · Use dry clean up procedures and avoid generating dust.
- · Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- · Dampen with water to prevent dusting before sweeping.
- · Place in suitable containers for disposal.
- Environmental hazard contain spillage.
- MAJOR SPILLS

Environmental hazard - contain spillage.

Moderate hazard.

· CAUTION: Advise personnel in area.

· Alert Emergency Responders and tell them location and nature of hazard.

### Section 7 - HANDLING AND STORAGE

#### **PROCEDURE FOR HANDLING**

· Avoid all personal contact, including inhalation.

· Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

· Do NOT cut, drill, grind or weld such containers.

· In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

#### **RECOMMENDED STORAGE METHODS**

· Polyethylene or polypropylene container.

· Check all containers are clearly labelled and free from leaks.

#### STORAGE REQUIREMENTS

■ Observe manufacturer's storing and handling recommendations. · Store at RT.

### Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

### **EXPOSURE CONTROLS**

| Source                                                                | Material                                                                                                                    | TWA<br>ppm | TWA<br>mg/m³ | STEL<br>ppm | STEL<br>mg/m³ | Peak<br>ppm | Peak<br>mg/m³ | TWA<br>F/CC | Notes |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------|--------------|-------------|---------------|-------------|---------------|-------------|-------|
|                                                                       |                                                                                                                             |            |              |             |               |             |               |             |       |
| Canada -<br>Ontario<br>Occupational<br>Exposure<br>Limits             | 2-chlorophenylhydrazine<br>hydrochloride (Particles<br>(Insoluble or Poorly<br>Soluble) Not Otherwise)                      |            | 10 (I)       |             |               |             |               |             |       |
| Canada -<br>British<br>Columbia<br>Occupational<br>Exposure<br>Limits | 2-chlorophenylhydrazine<br>hydrochloride (Particles<br>(Insoluble or Poorly<br>Soluble) Not Otherwise<br>Classified (PNOC)) |            | 10 (N)       |             |               |             |               |             |       |

| Canada -<br>Ontario<br>Occupational<br>Exposure<br>Limits                                   | 2-chlorophenylhydrazine<br>hydrochloride (Specified<br>(PNOS) / Particules<br>(insolubles ou peu<br>solubles) non précisées<br>par ailleurs) | 3 (R) |                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US -<br>Tennessee<br>Occupational<br>Exposure<br>Limits - Limits<br>For Air<br>Contaminants | 2-chlorophenylhydrazine<br>hydrochloride (Particulates<br>not otherwise regulated<br>Respirable fraction)                                    | 5     |                                                                                                                                                                                                                                       |
| US - California<br>Permissible<br>Exposure<br>Limits for<br>Chemical<br>Contaminants        | 2-chlorophenylhydrazine<br>hydrochloride (Particulates<br>not otherwise regulated<br>Respirable fraction)                                    | 5     | (n)                                                                                                                                                                                                                                   |
| US - Oregon<br>Permissible<br>Exposure<br>Limits (Z-1)                                      | 2-chlorophenylhydrazine<br>hydrochloride (Particulates<br>not otherwise regulated<br>(PNOR) (f) Total Dust)                                  | 10    | Bold print<br>identifies<br>substances<br>for which the<br>Oregon<br>Permissible<br>Exposure<br>Limits<br>(PELs) are<br>different<br>than the<br>federal<br>Limits.<br>PNOR<br>means<br>"particles<br>not<br>otherwise<br>regulated." |
| US - Michigan<br>Exposure<br>Limits for Air<br>Contaminants                                 | 2-chlorophenylhydrazine<br>hydrochloride (Particulates<br>not otherwise regulated,<br>Respirable dust)                                       | 5     |                                                                                                                                                                                                                                       |
| US - Oregon<br>Permissible<br>Exposure<br>Limits (Z-1)                                      | 2-chlorophenylhydrazine<br>hydrochloride (Particulates<br>not otherwise regulated -<br>(PNOR) (f) Respirable<br>Fraction)                    | 5     | Bold print<br>identifies<br>substances<br>for which the<br>Oregon<br>Permissible<br>Exposure<br>Limits<br>(PELs) are<br>different<br>than the<br>federal<br>Limits.<br>PNOR<br>means<br>"particles<br>not<br>otherwise<br>regulated." |
| US - Wyoming<br>Toxic and<br>Hazardous<br>Substances<br>Table Z1 Limits<br>for Air          | 2-chlorophenylhydrazine<br>hydrochloride (Particulates<br>not otherwise regulated<br>(PNOR)(f)- Respirable<br>fraction)                      | 5     |                                                                                                                                                                                                                                       |

#### Contaminants

Canada -

Prince Edward Island Occupational Exposure Limits ENDOELTABLE

2-chlorophenylhydrazine hydrochloride (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)

10

See Appendix B current TLV/BEI Book

#### PERSONAL PROTECTION



#### RESPIRATOR

•Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

#### EYE

· Safety glasses with side shields.

· Chemical goggles.

#### HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

· frequency and duration of contact,

· chemical resistance of glove material,

· glove thickness and

· dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

 $\cdot$  When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.

#### · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- · nitrile rubber
- · butyl rubber
- · fluorocaoutchouc

· polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

#### OTHER

- · Overalls.
- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.
- Lyc wash unit.

#### **ENGINEERING CONTROLS**

· Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.

• Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

### **Section 9 - PHYSICAL AND CHEMICAL PROPERTIES**

#### PHYSICAL PROPERTIES

Solid. Mixes with water. State

Divided solid

Molecular Weight

179.05

| Melting Range (°F)        | 392-397 (decomp) | Viscosity                      | Not Applicable |
|---------------------------|------------------|--------------------------------|----------------|
| Boiling Range (°F)        | Not applicable   | Solubility in water (g/L)      | Miscible       |
| Flash Point (°F)          | Not available    | pH (1% solution)               | Not available  |
| Decomposition Temp (°F)   | Not Available    | pH (as supplied)               | Not applicable |
| Autoignition Temp (°F)    | Not available    | Vapour Pressure (mmHG)         | Negligible     |
| Upper Explosive Limit (%) | Not available.   | Specific Gravity (water=1)     | Not available  |
| Lower Explosive Limit (%) | Not available    | Relative Vapor Density (air=1) | >1             |
| Volatile Component (%vol) | Negligible       | Evaporation Rate               | Not applicable |

#### APPEARANCE

Off-white powder; mixes with water.

### Section 10 - CHEMICAL STABILITY

#### CONDITIONS CONTRIBUTING TO INSTABILITY

 $\cdot$  Presence of incompatible materials.

 $\cdot$  Product is considered stable.

#### STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

### Section 11 - TOXICOLOGICAL INFORMATION

2-chlorophenylhydrazine hydrochloride

#### TOXICITY AND IRRITATION

#### 2-CHLOROPHENYLHYDRAZINE HYDROCHLORIDE:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

■ Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type.

No significant acute toxicological data identified in literature search.

#### **Section 12 - ECOLOGICAL INFORMATION**

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

This material and its container must be disposed of as hazardous waste.

Avoid release to the environment.

Refer to special instructions/ safety data sheets.

#### Ecotoxicity

| Ingredient                               | Persistence:<br>Water/Soil | Persistence: Air     | Mobility |     |
|------------------------------------------|----------------------------|----------------------|----------|-----|
| 2-chlorophenylhydrazine<br>hydrochloride | HIGH                       | No Data<br>Available | LOW      | MED |

### **Section 13 - DISPOSAL CONSIDERATIONS**

#### **Disposal Instructions**

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life

considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

 $\cdot$  Recycle wherever possible.

· Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

### **Section 14 - TRANSPORTATION INFORMATION**



DOT: Symbols: G Hazard class or Division: 9 Identification Numbers: UN3077 PG: III Label Codes: 9 Special provisions: 8, 146, 335, B54, IB8, IP3, N20, T1, TP33 Packaging: Exceptions: 155 Packaging: Non- bulk: 213 Packaging: Exceptions: 155 Quantity limitations: No limit Passenger aircraft/rail: Quantity Limitations: Cargo No limit Vessel stowage: Location: A aircraft only: Vessel stowage: Other: None Hazardous materials descriptions and proper shipping names: Environmentally hazardous substance, solid, n.o.s Air Transport IATA: UN/ID Number: 3077 Packing Group: III Special provisions: A97 Cargo Only Packing Instructions: 956 Maximum Qty/Pack: 400 kg

Passenger and Cargo Passenger and Cargo Packing Instructions: Y956 Maximum Qty/Pack: 400 kg Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity Packing Instructions: 956 Maximum Qty/Pack: 30 kg G Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. \*(CONTAINS 2-CHLOROPHENYLHYDRAZINE HYDROCHLORIDE)

#### Maritime Transport IMDG:

IMDG Class: 9 IMDG Subrisk: None UN Number: 3077 Packing Group: III EMS Number: F-A,S-F Special provisions: 274 335 Limited Quantities: 5 kg Marine Pollutant: Yes Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.(contains 2-chlorophenylhydrazine hydrochloride)

### Section 15 - REGULATORY INFORMATION

**2-chlorophenylhydrazine hydrochloride (CAS: 41052-75-9) is found on the following regulatory lists;** "Canada Domestic Substances List (DSL)"

### Section 16 - OTHER INFORMATION

#### LIMITED EVIDENCE

- Inhalation may produce health damage\*.
- Cumulative effects may result following exposure\*.
- Possible respiratory sensitiser\*.
- \* (limited evidence).

#### Denmark Advisory list for selfclassification of dangerous substances

Substance CAS Suggested codes 2- chlorophenylhydrazine hydrochloride 41052-75-9 R43 N; R51/53

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

■ Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Apr-4-2009 Print Date:Aug-9-2011