3,5-Dinitrobenzyl chloride

sc-238703

The Power to Question

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

3,5-Dinitrobenzyl chloride

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255

(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

• Intermediate.

SYNONYMS

C7-H5-CI-N2-O4, (O2N)2C6H3CH2CI, "benzyl chloride, 3, 5-dinitro-", "benzyl chloride, 3, 5-dinitro-", "alpha-chloro-3, 5-dinitro-", "benzene, (1-chloromethyl)-3, 5-dinitro-", "benzene, (1-chloromethyl)-3, 5-dinitro-", "toluene, alpha-chloro-3, 5-dinitro-", "toluene, alpha-chloro-3, 5-dinitro-"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK

Causes severe burns. Risk of serious damage to eyes. Harmful to aquatic organisms.

POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS

SWALLOWED

- The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and esophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Swelling of the epiglottis may make it difficult to breathe which may result in suffocation. More severe exposure may result in vomiting blood and thick mucus, shock, abnormally low blood pressure, fluctuating pulse, shallow respiration and clammy skin, inflammation of stomach wall, and rupture of esophageal tissue. Untreated shock may eventually result in kidney failure. Severe cases may result in perforation of the stomach and abdominal cavity with consequent infection, rigidity and fever. There may be severe narrowing of the esophageal or pyloric sphincters; this may occur immediately or after a delay of weeks to years. There may be coma and convulsions, followed by death due to infection of the abdominal cavity, kidneys or lungs.
- · Accidental ingestion of the material may be damaging to the health of the individual.
- The substance and/or its metabolites may bind to hemoglobin inhibiting normal uptake of oxygen. This condition, known as "methemoglobinemia", is a form of oxygen starvation (anoxia).

Symptoms include cyanosis (a bluish discoloration skin and mucous membranes) and breathing difficulties. Symptoms may not be evident until several hours after exposure.

At about 15% concentration of blood methemoglobin there is observable cyanosis of the lips, nose and earlobes. Symptoms may be absent although euphoria, flushed face and headache are commonly experienced. At 25-40%, cyanosis is marked but little disability occurs other than that produced on physical exertion. At 40-60%, symptoms include weakness, dizziness, lightheadedness, increasingly severe headache, ataxia, rapid shallow respiration, drowsiness, nausea, vomiting, confusion, lethargy and stupor. Above 60% symptoms include dyspnea, respiratory depression, tachycardia or bradycardia, and convulsions. Levels exceeding 70% may be fatal.

EYE

- The material can produce severe chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
- If applied to the eyes, this material causes severe eye damage.
- Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possibly irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply opaque resulting in blindness.
- Irritation of the eyes may produce a heavy secretion of tears (lachrymation).

SKIN

- The material can produce severe chemical burns following direct contactwith the skin.
- Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
- Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction.

INHALED

- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness. Swelling of the lungs can occur, either immediately or after a delay; symptoms of this include chest tightness, shortness of breath, frothy phlegm and cyanosis. Lack of oxygen can cause death hours after onset.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Hydrogen chloride (HCl) vapour or fumes present a hazard from a single acute exposure. Exposures of 1300 to 2000 ppm have been lethal to humans in a few minutes.

Inhalation of HCI may cause choking, coughing, burning sensation and may cause ulceration of the nose, throat and larynx. Fluid on the lungs followed by generalised lung damage may follow.

Breathing of HCl vapour may aggravate asthma and inflammatory or fibrotic pulmonary disease.

High concentrations cause necrosis of the tracheal and bronchial epithelium, pulmonary oedema, atelectasis and emphysema and damage to the pulmonary blood vessels and liver.

CHRONIC HEALTH EFFECTS

• Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs. Chronic exposure may inflame the skin or conjunctiva.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Chronic minor exposure to hydrogen chloride (HCI) vapour or fume may cause discolouration or erosion of the teeth, bleeding of the nose and gums; and ulceration of the nasal mucous membranes.

Repeated exposures of animals to concentrations of about 34 ppm HCl produced no immediate toxic effects.

Workers exposed to hydrochloric acid suffered from gastritis and a number of cases of chronic bronchitis have also been reported.

Repeated or prolonged exposure to dilute solutions of HCl may cause dermatitis.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Flammability: 1 Toxicity: 2 Min/Nil=0 **Body Contact:** 4 Low=1 2 Moderate=2 Reactivity: High=3 Chronic: Extreme=4 CAS RN NAME 3,5-dinitrobenzyl chloride 74367-78-5 >98 hydrolysis produces

hydrogen chloride 7647-01-0

Max

Section 4 - FIRST AID MEASURES

SWALLOWED

·

For advice, contact a Poisons Information Center or a doctor at once.

Min

- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- · Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Transport to hospital or doctor without delay.

EYE

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.
- Transport to hospital, or doctor.

INHALED

•

- If fumes or combustion products are inhaled remove from contaminated area.
- · Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
 Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g. lung edema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorized by him/her. (ICSC13719).

NOTES TO PHYSICIAN

- For acute or short term repeated exposures to strong acids:
- · Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterized by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues.

INGESTION:

- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- DO NOT attempt to neutralize the acid since exothermic reaction may extend the corrosive injury.
- Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.

- · Charcoal has no place in acid management.
- Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:

- Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- Deep second-degree burns may benefit from topical silver sulfadiazine.

FYF.

- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralizing agents or any other additives. Several liters of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents
 or artificial tears may be indicated dependent on the severity of the injury.
- Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology].

The material may induce methemoglobinemia following exposure.

- Initial attention should be directed at oxygen delivery and assisted ventilation if necessary. Hyperbaric oxygen has not demonstrated substantial benefits.
- Hypotension should respond to Trendelenburg's position and intravenous fluids; otherwise dopamine may be needed.
- Symptomatic patients with methemoglobin levels over 30% should receive methylene blue. (Cyanosis, alone, is not an indication for treatment). The usual dose is 1-2 mg/kg of a 1% solution (10 mg/ml) IV over 50 minutes; repeat, using the same dose, if symptoms of hypoxia fail to subside within 1 hour.

BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

Determinant	Index	Sampling Time	Comment
1. Methemoglobin in blood	1.5% of hemoglobin	During or end of shift	B, NS, SQ

B: Background levels occur in specimens collected from subjects NOT exposed

NS: Non-specific determinant; also observed after exposure to other materials

SQ: Semi-quantitative determinant - Interpretation may be ambiguous; should be used as a screening test or confirmatory test.

	Section 5 - FIRE FIGHTING MEASURES
Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%):	Not available

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

-
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- · Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible
- Slight fire hazard when exposed to heat or flame.
- Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- Heating may cause expansion or decomposition leading to violent rupture of rigid containers.
- May emit acrid smoke and corrosive fumes.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

· Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

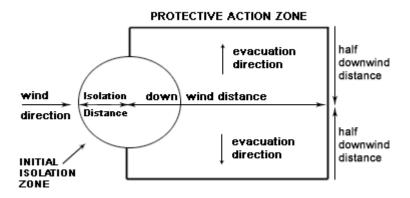
Safety Glasses.

Full face- shield.

Gloves: Respirator:

Type AB-P Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES


MINOR SPILLS

- •
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- · Check regularly for spills and leaks.

MAJOR SPILLS

- .
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Neutralize/decontaminate residue.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)
Isolation Distance 25 meters
Downwind Protection Distance 250 meters

FOOTNOTES

- 1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.
- 2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.
- 3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.
- 4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.
- 5 Guide 154 is taken from the US DOT emergency response guide book.
- 6 IERG information is derived from CANUTEC Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

3, 5-

dinitr

obenzyl					
chloride					
AEGL Type	10 min	30 min	60 min	4 hr	8 hr
AEGL 1	1.8	1.8	1.8	1.8	GALSYN~
AEGL 2	100	43	22	11	GALSYN~
AEGL 3	620	210	100	26	GALSYN~
hydrogen					
chloride					
AEGL Type	10 min	30 min	60 min	4 hr	8 hr
AEGL 1	1.8	1.8	1.8	1.8	GALSYN~
AEGL 2	100	43	22	11	GALSYN~
AEGL 3	620	210	100	26	GALSYN~

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

EMERGENCY RESPONSE PLANNING GUIDELINES (ERPG)

The maximum airborne concentration below which it is believed that nearly all individuals could be exposed for up to one hour WITHOUT experiencing or developing

life-threatening health effects is:

3,5-dinitrobenzyl chloride 150ppm

irreversible or other serious effects or symptoms which could impair an individual's ability to take protective action is:

3,5-dinitrobenzyl chloride 20ppm

other than mild, transient adverse effects without perceiving a clearly defined odour is:

3,5-dinitrobenzyl chloride 3ppm

American Industrial Hygiene Association (AIHA)

 $\begin{array}{lll} \mbox{Ingredients considered according exceed the following cutoffs} \\ \mbox{Very Toxic (T+)} &>= 0.1\% & \mbox{Toxic (T)} &>= 3.0\% \\ \mbox{R50} &>= 0.25\% & \mbox{Corrosive (C)} &>= 5.0\% \end{array}$

R51 >= 2.5% else >= 10%

where percentage is percentage of ingredient found in the mixture

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material.
- · Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.

- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- DO NOT use aluminum or galvanized containers.
- Check regularly for spills and leaks.
- Lined metal can, Lined metal pail/drum
- Plastic pail
- Polyliner drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- · Removable head packaging;
- · Cans with friction closures and
- low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS

- .
- Store in original containers.
- · Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
Canada - British Columbia Occupational Exposure Limits	3,5-dinitrobenzyl chloride (Hydrogen chloride Revised 2003)					2			
Canada - Ontario Occupational Exposure Limits	3,5-dinitrobenzyl chloride (Hydrogen chloride)					2			
US - Minnesota Permissible Exposure Limits (PELs)	3,5-dinitrobenzyl chloride (Hydrogen chloride)					5	7		
US ACGIH Threshold Limit Values (TLV)	3,5-dinitrobenzyl chloride (Hydrogen chloride)					2			TLV Basis: upper respiratory tract irritation
US NIOSH Recommended Exposure Limits (RELs)	3,5-dinitrobenzyl chloride (Hydrogen chloride)					5	7		

Canada - Alberta Occupational Exposure Limits	3,5-dinitrobenzyl chloride (Hydrogen chloride)			2	3	
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	3,5-dinitrobenzyl chloride (Hydrogen chloride)			5	7	
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants	3,5-dinitrobenzyl chloride (Hydrogen chloride)	(C)5	(C)7			
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	3,5-dinitrobenzyl chloride (Hydrogen chloride)			5	7	
US - California Permissible Exposure Limits for Chemical Contaminants	3,5-dinitrobenzyl chloride (Hydrogen chloride; muriatic acid)			5	7	
US - Idaho - Limits for Air Contaminants	3,5-dinitrobenzyl chloride (Hydrogen chloride)			5	7	
US - Hawaii Air Contaminant Limits	3,5-dinitrobenzyl chloride (Hydrogen chloride)			5	7	
US - Alaska Limits for Air Contaminants	3,5-dinitrobenzyl chloride (Hydrogen chloride)			5	7	
US - Michigan Exposure Limits for Air Contaminants	3,5-dinitrobenzyl chloride (Hydrogen chloride)			5	7	
Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances	3,5-dinitrobenzyl chloride (Hydrogen chloride)	5	7			
US - Washington Permissible exposure limits of air contaminants	3,5-dinitrobenzyl chloride (Hydrogen chloride)			5.0		
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	3,5-dinitrobenzyl chloride (Hydrogen chloride)			2		
US - Oregon Permissible Exposure Limits (Z1)	3,5-dinitrobenzyl chloride (Hydrogen chloride)			5	7	
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	3,5-dinitrobenzyl chloride (Hydrogen chloride)			5	7	
Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)	3,5-dinitrobenzyl chloride (Hydrogen chloride)			5	7,5	
US OSHA Permissible Exposure Levels (PELs) - Table Z1	3,5-dinitrobenzyl chloride (Hydrogen chloride)			5	7	
Canada - Northwest Territories Occupational Exposure Limits (English)	3,5-dinitrobenzyl chloride (Hydrogen chloride)			5	7.5	
Canada - Nova Scotia Occupational Exposure Limits	3,5-dinitrobenzyl chloride (Hydrogen chloride)			2		TLV Basis: upper respiratory tract irritation
Canada - Prince Edward Island Occupational Exposure Limits	3,5-dinitrobenzyl chloride (Hydrogen chloride)			2		TLV Basis: upper respiratory tract irritation
US OSHA Permissible Exposure Levels (PELs) - Table Z3	3,5-dinitrobenzyl chloride (Inert or Nuisance Dust: (d) Respirable fraction)		5			
US OSHA Permissible Exposure Levels (PELs) - Table Z3	3,5-dinitrobenzyl chloride (Inert or Nuisance Dust: (d) Total dust)		15			
US - Oregon Permissible Exposure Limits (Z3)	3,5-dinitrobenzyl chloride (Inert or Nuisance Dust: (d) Respirable fraction)		5			*

US - Oregon Permissible Exposure Limits (Z3)	3,5-dinitrobenzyl chloride (Inert or Nuisance Dust: (d) Total dust)		10			*
Canada - British Columbia Occupational Exposure Limits	hydrogen chloride (Hydrogen chloride Revised 2003)			2		
Canada - Ontario Occupational Exposure Limits	hydrogen chloride (Hydrogen chloride)			2		
US - Minnesota Permissible Exposure Limits (PELs)	hydrogen chloride (Hydrogen chloride)			5	7	
US ACGIH Threshold Limit Values (TLV)	hydrogen chloride (Hydrogen chloride)			2		TLV Basis: upper respiratory tract irritation
US NIOSH Recommended Exposure Limits (RELs)	hydrogen chloride (Hydrogen chloride)			5	7	
Canada - Alberta Occupational Exposure Limits	hydrogen chloride (Hydrogen chloride)			2	3	
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	hydrogen chloride (Hydrogen chloride)			5	7	
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants	hydrogen chloride (Hydrogen chloride)	(C)5	(C)7			
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	hydrogen chloride (Hydrogen chloride)			5	7	
US - California Permissible Exposure Limits for Chemical Contaminants	hydrogen chloride (Hydrogen chloride; muriatic acid)			5	7	
US - Idaho - Limits for Air Contaminants	hydrogen chloride (Hydrogen chloride)			5	7	
US - Hawaii Air Contaminant Limits	hydrogen chloride (Hydrogen chloride)			5	7	
US - Alaska Limits for Air Contaminants	hydrogen chloride (Hydrogen chloride)			5	7	
US - Michigan Exposure Limits for Air Contaminants	hydrogen chloride (Hydrogen chloride)			5	7	
Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances	hydrogen chloride (Hydrogen chloride)	5	7			
US - Washington Permissible exposure limits of air contaminants	hydrogen chloride (Hydrogen chloride)			5.0		
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	hydrogen chloride (Hydrogen chloride)			2		
US - Oregon Permissible Exposure Limits (Z1)	hydrogen chloride (Hydrogen chloride)			5	7	
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	hydrogen chloride (Hydrogen chloride)			5	7	
Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)	hydrogen chloride (Hydrogen chloride)			5	7,5	
US OSHA Permissible Exposure Levels (PELs) - Table Z1	hydrogen chloride (Hydrogen chloride)			5	7	
Canada - Northwest Territories Occupational Exposure Limits (English)	hydrogen chloride (Hydrogen chloride)			5	7.5	

Canada - Nova Scotia Occupational Exposure Limits	hydrogen chloride (Hydrogen chloride)	2	respiratory tract irritation
Canada - Prince Edward Island Occupational Exposure Limits	hydrogen chloride (Hydrogen chloride)	2	TLV Basis: upper respiratory tract irritation

EMERGENCY EXPOSURE LIMITS

Material	Revised IDLH Value (mg/m3)	Revised IDLH Value (ppm)
3,5-dinitrobenzyl chloride		50
hydrogen chloride		50

MATERIAL DATA

3,5-DINITROBENZYL CHLORIDE:

HYDROGEN CHLORIDE:

· for hydrogen chloride:

Odour Threshold Value: 0.262 ppm (detection), 10.06 ppm (recognition)

NOTE: Detector tubes for hydrochloric acid, measuring in excess of 1 ppm, are available commercially.

Hydrogen chloride is a strong irritant to the eyes, mucous membranes and skin. Chronic exposure produces a corrosive action on the teeth. Reports of respiratory irritation following short-term exposure at 5 ppm have lead to the recommended TLV-C. There is no indication that skin contact with hydrogen chloride elicits systemic poisoning and a skin designation has not been applied.

Exposure of humans to hydrogen chloride at 50 to 100 ppm for 1 hour is reported to be barely tolerable; 35 ppm caused irritation of the throat on short exposure and 10 ppm was the maximal concentration for prolonged exposure. It has been stated that hydrogen chloride at concentrations of 5 ppm is immediately irritating.

Odour Safety Factor(OSF)

OSF=1.3 (HYDROGEN CHLORIDE).

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Chemical goggles.
- Full face shield.
- Contact lenses pose a special hazard; soft contact lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET

• Elbow length PVC gloves.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- DVC Apro
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an

option).

- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may
 be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a
 complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

• Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Breathing Zone Level ppm (volume)	Maximum Protection Factor	Half-face Respirator	Full-Face Respirator
1000	10	AB-1 P	-
1000	50	-	AB-1 P
5000	50	Airline*	-
5000	100	-	AB-2 P
10000	100	-	AB-3 P
	100+		Airline* *

^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

•

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:

Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer

loading, crusher dusts, gas discharge (active generation into zone of 1-2.5 m/s (200-500 f/min.) rapid air motion)

grinding, abrasive blasting, tumbling, high speed wheel generated

dusts (released at high initial velocity into zone of very high rapid air 2.5-10 m/s (500-2000 f/min.) motion).

Within each range the appropriate value depends on:

Lower end of the range

1: Room air currents minimal or favorable to capture

1: Disturbing room air currents

2: Contaminants of low toxicity or of nuisance value only

3: Intermittent, low production.

4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Corrosive.

Acid.

State DIVIDED SOLID Molecular Weight 216.58

Melting Range (°F)	174.2- 179.6	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Reacts
Flash Point (°F)	>230	pH (1% solution)	Not available
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	>1
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Yellow-beige powder; moisture sensitive.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Contact with alkaline material liberates heat
- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- · Hydrogen chloride:
- reacts strongly with strong oxidisers (releasing chlorine gas), acetic anhydride, caesium cyanotridecahydrodecaborate(2-), ethylidene difluoride, hexalithium disilicide, metal acetylide, sodium, silicon dioxide, tetraselenium tetranitride, and many organic materials
- is incompatible with aliphatic amines, alkanolamines, alkylene oxides, aluminium, aluminium-titanium alloys, aromatic amines, amides, 2-aminoethanol, ammonia, ammonium hydroxide, calcium phosphide, chlorosulfonic acid, ethylenediamine, ethyleneimine, epichlorohydrin, isocyanates, metal acetylides, metal carbides, oleum, organic anhydrides, perchloric acid, 3-propiolactone, sulfuric acid, uranium phosphide, vinyl acetate, vinylidene fluoride
- attacks most metals forming flammable hydrogen gas, and some plastics, rubbers and coatings
- Polynitro derivatives of mono- and poly- cyclic systems are often explosives liable to detonate on grinding or impact.
- The presence of two or more nitro groups (each with 2 oxygen atoms) on an aromatic nucleus often increase the reactivity of other substituents and the tendency towards explosive instability as oxygen balance is approached.
- Aromatic nitro compounds range from slight to strong oxidizing agents. If mixed with reducing agents, including hydrides, sulfides and
 nitrides, they may begin a vigorous reaction that culminates in a detonation. The explosive tendencies of aromatic nitro compounds are
 increased by the presence of multiple nitro groups.
- In view of the reports of previous violent or explosive reactions, heating of polynitroaryl (particularly di- and tri-nitroaryl) compounds with alkalies, ammonia, or O-ethylsulfuric acid salts, in autoclaves should be avoided.
- Nitroaromatic and in particular polynitroaromatic compounds may present a severe explosion risk if subjected to shock or heated rapidly
 and uncontrollably as in fire situations. In addition, when such compounds are heated more moderately with caustic alkalies, even when
 water or organic solvents are present, there is also a risk of violent decomposition or explosion. Several industrial accidents, which
 probably were due to such interactions, have occurred; this potential hazard often remains unacknowledged.
- A range of exothermic decomposition energies for nitro compounds is given as 220-410 kJ/mol. The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment. For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g.

BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition

Reacts with mild steel, galvanized steel / zinc producing hydrogen gas which may form an explosive mixture with air. Segregate from alcohol, water.

Avoid strong bases.

Segregate from alkalis, oxidizing agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.

NOTE: May develop pressure in containers; open carefully. Vent periodically.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

3,5-dinitrobenzyl chloride

TOXICITY AND IRRITATION

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with

abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

No significant acute toxicological data identified in literature search.

CARCINOGEN

Hydrochloric acid	International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs	Group	3
Hydrogen chloride	ND	Carcinogen Category	A4

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

HYDROGEN CHLORIDE:

3,5-DINITROBENZYL CHLORIDE:

- DO NOT discharge into sewer or waterways.
- 3,5-DINITROBENZYL CHLORIDE:
- · Harmful to aquatic organisms.
- The nitrates are of environmental concern because of their high water solubility and consequent leaching, diffusion, and environmental mobility in soil and water. Nitrate can contaminate groundwater to unacceptable levels. Nitrite is formed from nitrate or ammonium ion by micro-organisms in soil, water, sewage and the alimentary tract. The concern with nitrate in the environment is related to its conversion to nitrite

Methemoglobinemia is caused following exposure to high levels of nitrite and produces difficulties in oxygen transport in the blood. Thousands of cases involving poisoning of infants, particularly in rural areas, have been reported as a result of drinking nitrate rich well-water. Other concerns deriving from exposure to environmental nitrates relate to the production of nitrosamines following the reaction of food nitrites and secondary amines. Other nitroso-compounds may result following reaction with nitrites and amides, ureas, carbamates and other nitrogenous compounds. Nitrosamines produce liver damage, hemorrhagic lung lesions, convulsions and coma in rats, and teratogenic effects in experimental animals.

The N-nitroso class of compounds include potent carcinogens and mutagens: induction of tumors by single doses of N-nitroso compounds testify to this.

- Prevent, by any means available, spillage from entering drains or watercourses.
- HYDROGEN CHLORIDE:
- Although inorganic chloride ions are not normally considered toxic they can exist in effluents at acutely toxic levels (chloride >3000 mg/l). the resulting salinity can exceed the tolerances of most freshwater organisms.

Inorganic chlorine eventually finds its way into the aqueous compartment and as such is bioavailable. Incidental exposure to inorganic chloride may occur in occupational settings where chemicals management policies are improperly applied. The toxicity of chloride salts depends on the counter-ion (cation) present; that of chloride itself is unknown. Chloride toxicity has not been observed in humans except in the special case of impaired sodium chloride metabolism, e.g. in congestive heart failure. Healthy individuals can tolerate the intake of large quantities of chloride provided that there is a concomitant intake of fresh water.

Although excessive intake of drinking-water containing sodium chloride at concentrations

above 2.5 g/litre has been reported to produce hypertension, this effect is believed to be related to the sodium ion concentration.

Chloride concentrations in excess of about 250 mg/litre can give rise to detectable taste in water, but the threshold depends upon the associated cations. Consumers can, however, become accustomed to concentrations in excess of 250 mg/litre. No health-based guideline value is proposed for chloride in drinking-water.

In humans, 88% of chloride is extracellular and contributes to the osmotic activity of body fluids. The electrolyte balance in the body is maintained by adjusting total dietary intake and by excretion via the kidneys and gastrointestinal tract. Chloride is almost completely absorbed in normal individuals, mostly from the proximal half of the small intestine. Normal fluid loss amounts to about 1.5?2 liters/day, together with about 4 g of chloride per day. Most (90 - 95%) is excreted in the urine, with minor amounts in faeces (4-%) and sweat (2%)

Chloride increases the electrical conductivity of water and thus increases its corrosivity. In metal pipes, chloride reacts with metal ions to form soluble salts thus increasing levels of metals in drinking-water. In lead pipes, a protective oxide layer is built up, but chloride enhances galvanic corrosion. It can also increase the rate of pitting corrosion of metal pipes.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility 3,5-dinitrobenzyl chloride HIGH LOW LOW HIGH HIGH

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

• Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralize at an approved treatment plant.
- Treatment should involve: Mixing or slurrying in water Neutralization with soda-lime or soda-ash followed by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until
 containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols:	None	Hazard class or Division:	8
Identification Numbers:	UN3261	PG:	II
Label Codes:	8	Special provisions:	IB8, IP2, IP4, T3, TP33
Packaging: Exceptions:	154	Packaging: Non-bulk:	212
Packaging: Exceptions:	154	Quantity limitations: Passenger aircraft/rail:	15 kg
Quantity Limitations: Cargo aircraft only:	50 kg	Vessel stowage: Location:	В
Vessel stowage: Other:	None		
Hazardaya matariala dagarintiana	and areas at chinains access		

Hazardous materials descriptions and proper shipping names:

Corrosive solid, acidic, organic, n.o.s.

Air Transport IATA:

ICAO/IATA Class:	8	ICAO/IATA Subrisk:	None
UN/ID Number:	3261	Packing Group:	II
Special provisions:	A3		

Shipping Name: CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S. *(CONTAINS 3,5-DINITROBENZYL CHLORIDE)

Maritime Transport IMDG:

IMDG Class:	8	IMDG Subrisk:	None
UN Number:	3261	Packing Group:	II
EMS Number:	F-A,S-B	Special provisions:	274 944
Limited Quantities:	1 kg		

Shipping Name: CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S.(contains 3,5-dinitrobenzyl chloride)

Section 15 - REGULATORY INFORMATION

3,5-dinitrobenzyl chloride (CAS: 74367-78-5) is found on the following regulatory lists;

"Canada Non-Domestic Substances List (NDSL)","US Toxic Substances Control Act (TSCA) - Inventory" Regulations for ingredients

hydrogen chloride (CAS: 7647-01-0) is found on the following regulatory lists;

"Canada - Alberta Ambient Air Quality Objectives", "Canada - Alberta Occupational Exposure Limits", "Canada - British Columbia Occupational Exposure Limits", "Canada - Northwest Territories Occupational Exposure Limits (English)", "Canada - Nova Scotia Occupational Exposure Limits", "Canada - Ontario Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits", "Canada Quebec Permissible Exposure Values for Airborne Contaminants (English)","Canada - Saskatchewan Industrial Hazardous Substances", "Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits", "Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances", "Canada Controlled Drugs and Substances Act Schedule VI", "Canada Domestic Substances List (DSL)","Canada Ingredient Disclosure List (SOR/88-64)","Canada National Pollutant Release Inventory (NPRI)","Canada Prohibited Toxic Substances, Schedule 2, Concentration Limits (English)","Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)","CODEX General Standard for Food Additives (GSFA) - Additives Permitted for Use in Food in General, Unless Otherwise Specified, in Accordance with GMP", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "IMO IBC Code Chapter 17: Summary of minimum requirements","IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk","International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs", "International Council of Chemical Associations (ICCA) - High Production Volume List", "International Maritime Dangerous Goods Requirements (IMDG Code) - Goods Forbidden for Transport", "OECD Representative List of High Production Volume (HPV) Chemicals", "United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances - Table II","United Nations List of Precursors and Chemicals Frequently used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances Under International Control - Table II", "US - Alaska Limits for Air Contaminants", "US - California Air Toxics ""Hot Spots"" List (Assembly Bill 2588) Substances for which emissions must be quantified", "US -California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List", "US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)","US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - California Toxic Air Contaminant List Category II", "US - Connecticut Hazardous Air Pollutants", "US - Hawaii Air Contaminant Limits", "US - Idaho - Limits for Air Contaminants", "US - Massachusetts Oil & Hazardous Material List", "US - Michigan Exposure Limits for Air Contaminants", "US - Minnesota Hazardous Substance List","US - Minnesota Permissible Exposure Limits (PELs)","US - New Jersey Right to Know Hazardous Substances","US -Oregon Hazardous Materials", "US - Oregon Permissible Exposure Limits (Z1)", "US - Pennsylvania - Hazardous Substance List", "US - Rhode Island Hazardous Substance List", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants", "US - Washington Permissible exposure limits of air contaminants", "US - Wyoming List of Highly Hazardous Chemicals, Toxics and Reactives", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants", "US ACGIH Threshold Limit Values (TLV)", "US ACGIH Threshold Limit Values (TLV) - Carcinogens", "US Clean Air Act - Hazardous Air Pollutants", "US CWA (Clean Water Act) - List of Hazardous Substances", "US CWA (Clean Water Act) - Reportable Quantities of Designated Hazardous Substances", "US Department of Homeland Security Chemical Facility Anti-Terrorism Standards - Chemicals of Interest", "US Department of Transportation (DOT) List of Hazardous Substances and Reportable Quantities - Hazardous Substances Other Than Radionuclides","US DOE Temporary Emergency Exposure Limits (TEELs)","US Drug Enforcement Administration (DEA) List I and II Regulated Chemicals","US EPA Acute Exposure Guideline Levels (AEGLs) - Final", "US EPA High Production Volume Chemicals Additional List", "US EPA Master Testing List - Index I Chemicals Listed", "US EPCRA Section 313 Chemical List", "US Food Additive Database", "US List of Lists - Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA) and Section 112(r) of the Clean Air Act","US NFPA 45 Fire Protection for Laboratories Using Chemicals - Flammability Characteristics of Common Compressed and Liquefied Gases", "US NIOSH Recommended Exposure Limits (RELs)","US OSHA List of Highly Hazardous Chemicals, Toxics and Reactives","US OSHA Permissible Exposure Levels (PELs) - Table Z1","US Postal Service (USPS) Hazardous Materials Table: Postal Service Mailability Guide", "US SARA Section 302 Extremely Hazardous Substances", "US Spacecraft Maximum Allowable Concentrations (SMACs) for Airborne Contaminants", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- * (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance CAS Suggested codes hydrogen chloride 7647- 01- 0 N R51/53

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Apr-2-2009 Print Date:Jun-9-2010