Benzylamine

sc-239323

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Benzylamine

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255

(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Laboratory reagent used in organic synthese; intermediate in dye, pharmaceutical and polymer manufacture.

SYNONYMS

C7-H9-N, C6H5CH2NH2, benzenemethanamine, amino-toluene, phenylmethylamine, moringine, "Sumine 2005", "Sumine 2006"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Causes burns.
Risk of serious damage to eyes.
HARMFUL - May cause lung damage if swallowed.
Harmful in contact with skin and if swallowed.
Flammable.

POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS

SWALLOWED

- The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Ingestion of alkaline corrosives may produce burns around the mouth, ulcerations and swellings of the mucous membranes, profuse saliva production, with an inability to speak or swallow. Both the esophagus and stomach may experience burning pain; vomiting and diarrhea may follow. Epiglottal swelling may result in respiratory distress and asphyxia; shock can occur. Narrowing of the esophagus, stomach or stomach valve may occur immediately or after a long delay (weeks to years). Severe exposure can perforate the esophagus or stomach leading to infections of the chest or abdominal cavity, with low chest pain, abdominal stiffness and fever. All of the above can cause death.
- Swallowing of the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis; serious consequences may result. (ICSC13733).
- Amines without benzene rings when swallowed are absorbed throughout the gut. Corrosive action may cause damage throughout the gastrointestinal tract. They are removed through the liver, kidney and intestinal mucosa by enzyme breakdown.

FYF

- The material can produce chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
- If applied to the eyes, this material causes severe eye damage.
- Direct eye contact with corrosive bases can cause pain and burns. There may be swelling, epithelium destruction, clouding of the cornea and inflammation of the iris. Mild cases often resolve; severe cases can be prolonged with complications such as persistent swelling, scarring, permanent cloudiness, bulging of the eye, cataracts, eyelids glued to the eyeball and blindness.
- Vapors of volatile amines irritate the eyes, causing excessive secretion of tears, inflammation of the conjunctiva and slight swelling of the cornea, resulting in "halos" around lights. This effect is temporary, lasting only for a few hours. However this condition can reduce the efficiency of undertaking skilled tasks, such as driving a car. Direct eye contact with liquid volatile amines may produce eye damage, permanent for the lighter species.
- Irritation of the eyes may produce a heavy secretion of tears (lachrymation).

SKIN

- The material can produce chemical burns following direct contactwith the skin.
- Skin contact with the material may be harmful; systemic effects may resultfollowing absorption.
- The material can produce severe chemical burns following direct contactwith the skin.
- The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.
- Skin contact with alkaline corrosives may produce severe pain and burns; brownish stains may develop. The corroded area may be soft, gelatinous and necrotic; tissue destruction may be deep.
- Volatile amine vapors produce irritation and inflammation of the skin. Direct contact can cause burns. They may be absorbed through the skin and cause similar effects to swallowing, leading to death. The skin may exhibit whiteness, redness and wheals.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Inhaling corrosive bases may irritate the respiratory tract. Symptoms include cough, choking, pain and damage to the mucous membrane. In severe cases, lung swelling may develop, sometimes after a delay of hours to days. There may be low blood pressure, a weak and rapid pulse, and crackling sounds.
- Inhalation hazard is increased at higher temperatures.

CHRONIC HEALTH EFFECTS

• Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population.

There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Most arylamines are powerful poisons to the blood-making system. High chronic doses cause congestion of the spleen and tumor formation.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Flammability: 2 Min/Nil=0
Low=1
Body Contact: 4 Min/Nil=0
Low=1
Moderate=2
High=3
Extreme=4

Reactivity: 1 Chronic: 2

NAME	CAS RN	%
benzylamine	100-46-9	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

- For advice, contact a Poisons Information Center or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Transport to hospital or doctor without delay.
- Avoid giving milk or oils.
- Avoid giving alcohol.
- If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

EYE

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.
- Transport to hospital, or doctor.

INHALED

- IINI
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
 Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g. lung edema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorized by him/her. (ICSC13719).

NOTES TO PHYSICIAN

- Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.
- For acute or short-term repeated exposures to highly alkaline materials:
- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- Oxygen is given as indicated.
- The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilization of proteins allow deep penetration into the tissue.

Alkalis continue to cause damage after exposure.

INGESTION:

• Milk and water are the preferred diluents

No more than 2 glasses of water should be given to an adult.

- Neutralizing agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.

Supportive care involves the following:

- Withhold oral feedings initially.
- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:

- Injury should be irrigated for 20-30 minutes.
- Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

Section 5 - FIRE FIGHTING MEASURES			
Vapor Pressure (mmHg):	0.75		
Upper Explosive Limit (%):	8.2 (108 C, 82 hPa)		
Specific Gravity (water=1):	0.981		
Lower Explosive Limit (%):	0.7 (57 C, 7.5 hPa)		

EXTINGUISHING MEDIA

.

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

. -

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Liquid and vapor are flammable.
- Moderate fire hazard when exposed to heat or flame.
- Vapor forms an explosive mixture with air.
- Moderate explosion hazard when exposed to heat or flame.
- Vapor may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition leading to violent rupture of containers.
- On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include: carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material. May emit corrosive fumes.

FIRE INCOMPATIBILITY

· Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Safety Glasses.

Full face- shield.

Gloves:

Respirator:

Type AK Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- IVII
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapors and contact with skin and eyes.

- Control personal contact by using protective equipment.
- Contain and absorb small quantities with vermiculite or other absorbent material.
- · Wipe up.
- Collect residues in a flammable waste container.

MAJOR SPILLS

· Chemical Class: amines, alkyl

For release onto land: recommended sorbents listed in order of priority.

TOT TOTOGOGO OTHER TATIO. TOO	minoriada corbonito notoa m	order or priority.		
SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
LAND SPILL - SMALL				
cross-linked polymer - particulate	1	shovel	shovel	R, W, SS
cross-linked polymer - pillow	1	throw	pitchfork	R,DGC, RT
sorbent clay - particulate	2	shovel	shovel	R, I, P
wood fiber - pillow	3	throw	pitchfork	R, P, DGC, RT,
treated wood fibre - pillow	3	throw	pitchfork	DGC, RT
foamed glass - pillow LAND SPILL - MEDIUM	4	throw	pitchfork	R, P, DGC, RT
cross-linked polymer -particulate	1	blower	skiploader	R, W, SS
cross-linked polymer - pillow	2	throw	skiploader	R, DGC, RT
sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	W, SS, DGC
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC
polypropylene - mat	4	throw	skiploader	DGC, RT

Legend

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

NOTE:

 Organic absorbents have been known to ignite when contaminated with amines in closed containers. Certain cellulosic materials used for spill cleanup such as wood chips or sawdust have shown reactivity with ethyleneamines and should be avoided.

Chemical Class: amines, aryl

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
LAND SPILL - SMALL				
wood fiber - pillow	1	throw	pitchfork	R, P, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R, I, P
foamed glass - pillow	2	throw	pitchfork	R, P, DGC, RT
wood fiber - particulate	3	shovel	shovel	R, W, P, DGC
treated wood fibre - pillow	3	throw	pitchfork	DGC, RT
polypropylene - mat	4	throw	pitchfork	DGC, RT
LAND SPILL - MEDIUM				2 : 2
sorbent clay -particulate	1	blower	skiploader	R, I, P
polypropylene - particulate	1	blower	skiploader	W, SS, DGC
diatomite- particulate	2	blower	skiploader	R, I,W, P
expanded mineral - particulate	2	blower	skiploader	R, I, W, P, DGC
wood fiber - particulate	2	blower	skiploader	R, W, P, DGC
polypropylene - mat	2	throw	skiploader	DGC, RT

Legend

DGC: Not effective where ground cover is dense

R; Not reusable

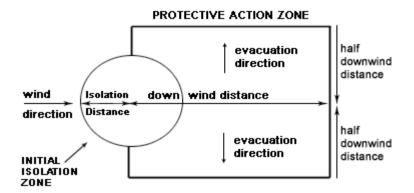
I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy


Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

NOTE:

- Organic absorbents have been known to ignite when contaminated with amines in closed containers. Certain cellulosic materials used for spill cleanup such as wood chips or sawdust have shown reactivity with ethyleneamines and should be avoided.
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation.
- Stop leak if safe to do so.
- · Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Neutralize/decontaminate residue.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)
Isolation Distance 25 meters
Downwind Protection Distance 250 meters

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide 153 is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.

- WARNING: To avoid violent reaction, ALWAYS add material to water and NEVER water to material.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS

- Lined metal can, Lined metal pail/drum
- Plastic pail
- Polyliner drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Removable head packaging;
- · Cans with friction closures and
- low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS

.

- Store in approved flammable liquid storage area.
- No smoking, naked lights/ignition sources.
- · Keep containers securely sealed.
- Store away from incompatible materials in a cool, dry, well-ventilated area.
- Protect containers against physical damage and check regularly for leaks.
- Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access.
- Store in grounded, properly designed and approved vessels and away from incompatible materials
- Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
- Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
- Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors.
- Keep adsorbents for leaks and spills readily available
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up; storage tanks should be above ground and diked to hold entire contents
- Observe manufacturer's storing and handling recommendations.
- Store in an upright position.

DO NOT store near acids, or oxidizing agents.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

The following materials had no OELs on our records

• benzylamine: CAS:100-46-9

MATERIAL DATA

BENZYLAMINE:

• Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- _ .
- · Chemical goggles.
- Full face shield.
- Contact lenses pose a special hazard; soft contact lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET

- Elbow length PVC gloves.
- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended

OTHER

- Overalls.
- PVC Aprop
- PVC protective suit may be required if exposure severe.
- Evewash unit.
- Ensure there is ready access to a safety shower.

RESPIRATOR

• Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Breathing Zone Level ppm (volume)	Maximum Protection Factor	Half-face Respirator	Full-Face Respirator
1000	10	AK-1	-
1000	50	-	AK-1

5000	50	Airline*	-
5000	100	-	AK-2
10000	100	-	AK-3
	100+		Airline* *

^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

• Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator. Correct fit is essential to obtain adequate protection an approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapors, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only
Simple theory above that air valenty falls regidly with distance as	way from the energing of a simple extraction pipe. Valently generally

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid.

Mixes with water.

Corrosive. Alkaline.

State	Liquid	Molecular Weight	107.16
Melting Range (°F)	-45.04	Viscosity	1.82 cSt@40°C
Boiling Range (°F)	363.2- 365	Solubility in water (g/L)	Miscible
Flash Point (°F)	161.6 (DIN 51758)	pH (1% solution)	11.4 (100 g/l)
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	761 (DIN 517940	Vapor Pressure (mmHg)	0.75
Upper Explosive Limit (%)	8.2 (108 C, 82 hPa)	Specific Gravity (water=1)	0.981
Lower Explosive Limit (%)	0.7 (57 C, 7.5 hPa)	Relative Vapor Density (air=1)	Not available
Volatile Component (%vol)	Negligible	Evaporation Rate	Not available

APPEARANCE

Clear, colourless to yellow liquid; with strong amine-like odour mixes with water. Absorbs CO2 from air.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- · Benzvlamine:
- is a strongly alkaline liquid which is incompatible with strong acids, organic anhydrides, isocyanates, aldehydes, alkylene oxides, epichlorohydrin, aldehydes, alcohols, glycols, phenols, cresols, caprolactam solution
- is violently or explosively reactive with N-chlorosuccinimide
- slowly corrodes some metals
- attacks some plastics, rubbers and coatings.
- Many arylamines (aromatic amines such as aniline, N-ethylaniline, o-toluidine, xylidine etc. and their mixtures) are hypergolic (ignite spontaneously) with red fuming nitric acid. When the amines are dissolved in triethylamine, ignition occurs at -60 deg. C. or less.
- Various metal oxides and their salts may promote ignition of amine-red fuming nitric acid systems. Soluble materials such as copper(I) oxide, ammonium metavanadate are effective; insoluble materials such as copper(II) oxide, iron(II) oxide, potassium dichromate are also effective
- · Avoid oxidizing agents, acids, acid chlorides, acid anhydrides.
- Avoid contact with copper, aluminium and their alloys.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

benzvlamine

TOXICITY AND IRRITATION

• unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

IRRITATION Intraperitoneal (mouse) LD50: 600 mg/kg Skin (rabbit): Corrosive

Oral (Rat) LD50: 563 mg/kg * Skin: SEVERE

Dermal (Rat) LD50: 1350 mg/kg *

· Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Inhalation-risk test (IRT): No mortality within 3 hours as shown in animal studies. Deaths possible with prolonged exposure.

No experimental evidence available for genotoxicity in vitro (Ames test negative). *

* BASF MSDS

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

BENZYLAMINE:

· Aromatic amines (arylamines), particularly primary aromatic amines, covalently and irreversibly bind to humic substances present in most natural waters

All metabolites with moieties of: anilines, benzidines and toluidines are of environmental concern. Anilines and benzidines are both acutely toxic and toxic depending on the specific aquatic species (except algae). Toluidines represent a similar concern, It has been speculated that aqueous solutions of aromatic amines can be oxidised by organic radicals, but there are no actual data on reaction rates. Based on a study of reaction rate data for these compounds an estimate of the half-life of aromatic amines in water is approximately 100 days, assuming a peroxy radical concentration of 10-10 mole/L in sunlit, oxygenated water.

For benzylamine:

log Kow: 1.09

Accumulation in organisms not expected

Biodegradation: DOC reduction >70% (OECD 302B) - easily eliminated form water; biodegradable

Environmental fate:

When released into the soil, benzylamine is expected to readily biodegrade. When released into water, this material is expected to readily biodegrade. Benzylamine has a log octanol-water partition coefficient of less than 3.0. Volatilisation, adsorption and bioconcentration are not expected to be important environmental fate processes. When released into the air, benzylamine is expected to be readily degraded by reaction with photochemically produced hydroxyl radicals. When released into the air, benzylamine is expected to have a half-life of less than 1 day. When released into the air, this material is not expected to be subject to wet deposition Ecotoxicity:

Fish LC50 (96 h): golden ore >22-<46 mg/l (nominal concentration DIN 38412 Part 15)

Daphnia magna (48 h): 60 mg/l (nominal concentration DIN 38412 Part 11)

Green algae EC50 (96 h): 6 mg/l (nominal concentration DIN 38412 Part 9).

- Prevent, by any means available, spillage from entering drains or watercourses.
- DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility benzylamine HIGH Element LOW MED

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

• Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralize at an approved treatment plant.
- Treatment should involve: Neutralization with suitable dilute acid followed by: Burial in a licensed land-fill or Incineration in a licensed apparatus
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols:	None	Hazard class or Division:	8
Identification Numbers:	UN2735	PG:	II
Label Codes:	8	Special provisions:	B2, IB2, T11, TP1, TP27
Packaging: Exceptions:	154	Packaging: Non-bulk:	202
Packaging: Exceptions:	154	Quantity limitations: Passenger aircraft/rail:	1 L
Quantity Limitations: Cargo aircraft only:	30 L	Vessel stowage: Location:	A
Vessel stowage: Other:	52		

Hazardous materials descriptions and proper shipping names:

 $\label{eq:liquid} Amines, liquid, corrosive, n.o.s., or Polyamines, liquid, corrosive, n.o.s.$

Air Transport IATA:

ICAO/IATA Class: 8 ICAO/IATA Subrisk: None
UN/ID Number: 2735 Packing Group: II
Special provisions: A3

Shipping Name: AMINES, LIQUID, CORROSIVE, N.O.S. *(CONTAINS BENZYLAMINE)

Maritime Transport IMDG:

IMDG Class:8IMDG Subrisk:NoneUN Number:2735Packing Group:IIEMS Number:F-A, S-BSpecial provisions:274

Limited Quantities: 1 L

Shipping Name: AMINES, LIQUID, CORROSIVE, N.O.S. or POLYAMINES, LIQUID, CORROSIVE, N.O.S. (contains benzylamine)

Section 15 - REGULATORY INFORMATION

benzylamine (CAS: 100-46-9) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)", "OECD Representative List of High Production Volume (HPV) Chemicals", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- · Cumulative effects may result following exposure*.
- · Possible respiratory and skin sensitizer*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Sep-29-2008 Print Date: Jul-9-2010