Bithionol

sc-239383

Material Safety Data Sheet

The Power to Questi

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Bithionol

STATEMENT OF HAZARDOUS NATURE

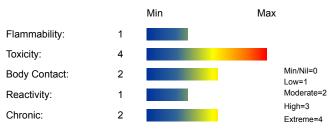
CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch


Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C12-H6-Cl4-O2-S, "phenol, 2, 2' -thiobis(4, 6-dichloro-", "bis(3, 5-dichloro-2-hydroxyphenyl)sulfide", "bis(2-hydroxy-3, 5-dichlorophenyl)sulphide", "bithionol sulfide", "bithional (sic)", "2, 2' -dihydroxy-3, 3' -5, 5' -tetrachlorodiphenylsulfide", "2-hydroxy-3, 5-dichlorophenyl sulfide", "2, 2' -thiobis(4, 6-dichlorophenol)", Actamer, Bidiphen, Bitin, "CP 3438", Lorothidol, Lorothiodol, NCI-C60628, Neopellis, "Vancide BL", "XL 7", TBP

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Very toxic if swallowed.

May cause long-term adverse effects in the environment.

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Skin contact may produce health damage*.

Inhalation may produce serious health damage*.

May produce skin discomfort*.

Possible skin sensitiser*.

Limited evidence of a carcinogenic effect*.

* (limited evidence).

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Severely toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 5 gram may be fatal or may produce serious damage to the health of the individual.
- Chlorophenols produce signs of intoxication in rats. Symptoms include restlessness, increased rate of respiration, rapidly developing motor weakness, tremours, clonic convulsions, dyspnae and coma.
- Monochlorophenols are slightly less toxic than phenol but more toxic than chlorobenzene while Dichlorophenols may be more potent than phenol in eliciting convulsions. Toxicity increases with chlorination.

EYE

■ Although the material is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may cause transient discomfort characterised by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN

- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
- This material is a photosensitiser. Certain individuals working with this substance may show allergic reaction of the skin under sunlight. This results in sensitivity to sunburn (may be severe) unless protective covering and 15+PF sunscreen are used. Responses may vary from sunburn-like effects to swelling and blistering lesions.

INHALED

- The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of dusts, or fumes, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Inhalation of dusts, generated by the material during the course of normal handling, may produce serious damage to the health of the individual
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

CHRONIC HEALTH EFFECTS

■ There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. There is limited evidence that, skin contact with this product is more likely to cause a sensitisation reaction in some persons compared to the general population.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Chlorophenols have been associated with cancers of the throat, nose and connective tissue.

This material may increase sensitivity of skin to light (UV or visible) after several weeks. This only occurs if the subject has been exposed to this substance previously. Symptoms present as eczema affecting exposed areas and in severe cases, areas under clothing as well. Thickening and discolouration may develop; reactivity to sunlight may remain even after the offending chemical is removed. This reaction typically applies to topically applied halogenated salicylanilides, to systemic reaction to chlorothiazide, phenothiazines and also photosensitisation to epoxy resins.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS				
NAME	CAS RN	%		
bithionol	97-18-7	>98		

Section 4 - FIRST AID MEASURES

SWALLOWED

- Give a slurry of activated charcoal in water to drink. NEVER GIVE AN UNCONSCIOUS PATIENT WATER TO DRINK.
- At least 3 tablespoons in a glass of water should be given.
- Although induction of vomiting may be recommended (IN CONSCIOUS PERSONS ONLY), such a first aid measure is dissuaded
 due to the risk of aspiration of stomach contents. (i) It is better to take the patient to a doctor who can decide on the necessity and
 method of emptying the stomach. (ii) Special circumstances may however exist; these include non- availability of charcoal and the
 ready availability of the doctor.

NOTE: If vomiting is induced, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear protective gloves when inducing vomiting.

- REFER FOR MEDICAL ATTENTION WITHOUT DELAY.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS. (ICSC20305/20307)

EYE

If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the
 upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

- For acute or short term repeated exposures to phenols/ cresols:
- Phenol is absorbed rapidly through lungs and skin. [Massive skin contact may result in collapse and death]*
- [Ingestion may result in ulceration of upper respiratory tract; perforation of oesophagus and/or stomach, with attendant complications, may occur. Oesophageal stricture may occur.]*
- An initial excitatory phase may present. Convulsions may appear as long as 18 hours after ingestion. Hypotension and ventricular tachycardia that require vasopressor and antiarrhythmic therapy, respectively, can occur.
- Respiratory arrest, ventricular dysrhythmias, seizures and metabolic acidosis may complicate severe phenol exposures so the initial
 attention should be directed towards stabilisation of breathing and circulation with ventilation, intubation, intravenous lines, fluids and
 cardiac monitoring as indicated.
- [Vegetable oils retard absorption; do NOT use paraffin oils or alcohols. Gastric lavage, with endotracheal intubation, should be
 repeated until phenol odour is no longer detectable; follow with vegetable oil. A saline cathartic should then be given.]*
 ALTERNATIVELY: Activated charcoal (1g/kg) may be given. A cathartic should be given after oral activated charcoal.
- Severe poisoning may require slow intravenous injection of methylene blue to treat methaemoglobinaemia.
- [Renal failure may require haemodialysis.]*
- Most absorbed phenol is biotransformed by the liver to ethereal and glucuronide sulfates and is eliminated almost completely after 24 hours. [Ellenhorn and Barceloux: Medical Toxicology] *[Union Carbide]

BIOLOGICAL EXPOSURE INDEX - BEL

These represent the determinants observed in specimens collected from a healthy worker who has been exposed to the Exposure Standard (ES or TLV):

Determinant	Index	Sampling Time	Comments
1. Total phenol in blood	250 mg/gm creatinine	End of shift	B, NS
55		o	

B: Background levels occur in specimens collected from subjects NOT exposed

NS: Non-specific determinant; also seen in exposure to other materials.

Section 5 - FIRE FIGHTING MEASURES			
Vapor Pressure (mmHg):	8.251x10-9 mm Hg		
Upper Explosive Limit (%):	Not available		
Specific Gravity (water=1):	1.73		
Lower Explosive Limit (%):	Not available		

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

When any large container (including road and rail tankers) is involved in a fire.

consider evacuation by 800 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions).
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited particles exceeding this limit will generally not form flammable dust clouds.; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL).are applicable to dust clouds but only the LEL is of practical use; this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC)
- When processed with flammable liquids/vapors/mists,ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable
 mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required
 to ignite dust clouds MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture
 will be lower than the individual LELs for the vapors/mists or dusts
- A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
- Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to
 damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust
 layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted
 from chain reactions of this type.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- All movable parts coming in contact with this material should have a speed of less than 1-meter/sec
- A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or
 pressure, may result in ignition especially in the absence of an apparent ignition source
- One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours).

Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), sulfur oxides (SOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

• Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

Environmental hazard - contain spillage.

- · Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

Environmental hazard - contain spillage.

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- · Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Establish good housekeeping practices.
- Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be
 given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA
 Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal
 area. Vacuums with explosion-proof motors should be used.

- Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- Do not empty directly into flammable solvents or in the presence of flammable vapors.
- The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic
 bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):

- Removable head packaging;
- · Cans with friction closures and
- low pressure tubes and cartridges

may be used.

Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages *.

In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *.

* unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

All inner and sole packagings for substances that have been assigned to Packaging Groups I or II on the basis of inhalation toxicity criteria, must be hermetically sealed.

STORAGE REQUIREMENTS

- Store in original containers.
- · Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

• bithionol: CAS:97-18-7

PERSONAL PROTECTION

RESPIRATOR

• Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

EYE

Safety glasses with side shields.

- · Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET

- Wear chemical protective gloves, eg. PVC.
- · Wear safety footwear or safety gumboots, eg. Rubber

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other
 protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- Eyewash unit.
- Barrier cream.
- Skin cleansing cream.

ENGINEERING CONTROLS

■ Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a
 certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.
 Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range

- 1: Room air currents minimal or favourable to capture
- 1: Disturbing room air currents
- 2: Contaminants of low toxicity or of nuisance value only 2: Contaminants of high toxicity
- 3: Intermittent, low production.

- 3: High production, heavy use
- 4: Large hood or large air mass in motion
- 4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

Sinks in water

State	Divided solid	Molecular Weight	356.05
Melting Range (°F)	370	Viscosity	Not Applicable
Boiling Range (°F)	Not applicable	Solubility in water (g/L)	Immiscible
Flash Point (°F)	Not available	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapor Pressure (mmHg)	8.251x10-9 mm Hg
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	1.73
Lower Explosive Limit (%)	Not available	Relative Vapour Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not available

APPEARANCE

Crystalline powder which is odourless or has a slight aromatic or phenolic odour; does not mix well with water (0.0004% at 25 C). Soluble in alcohol, acetone, ether, chloroform and in dilute solutions of alkali hydroxides (a 4% solution dissolves 16.2% bithionol). pKa1 4.82; pKa2 10.50.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidising agents

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

bithionol

TOXICITY AND IRRITATION

BITHIONOL:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION
Oral (rat) LD50: 7 mg/kg Nil Reported

Oral (mouse) LD50: 760 mg/kg

Intraperitoneal (mouse) LD50: 100 mg/kg

Intravenous (mouse) LD50: 18 mg/kg

Equivocal tumorigen by RTECS criteria

CARCINOGEN

bithionol US - Maine Chemicals of High Concern List

Carcinogen

Section 12 - ECOLOGICAL INFORMATION

May cause long-term adverse effects in the environment.

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

This material and its container must be disposed of as hazardous waste.

Avoid release to the environment.

Refer to special instructions/ safety data sheets.

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
bithionol	HIGH	No Data Available	LOW	LOW

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and MSDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols: None Hazard class or Division: 6.1

UN2811 PG: **Identification Numbers:** Ш Label Codes: Special provisions: IB8, IP2, IP4, T3, TP33 6.1 Packaging: Exceptions: Packaging: Non-bulk: 153 212 Quantity limitations: Packaging: Exceptions: 153 25 kg Passenger aircraft/rail: Quantity Limitations: Cargo 100 kg Vessel stowage: Location: B aircraft only: Vessel stowage: Other: None

Hazardous materials descriptions and proper shipping names:

Toxic solids, organic, n.o.s. Air Transport IATA:

ICAO/IATA Class: 6.1 ICAO/IATA Subrisk: None UN/ID Number: 2811 Packing Group: Ш Special provisions: А3 Cargo Only Packing Instructions: 676 Maximum Qty/Pack: 100 kg Passenger and Cargo Passenger and Cargo Packing Instructions: 669 Maximum Qty/Pack: 25 kg Passenger and Cargo Passenger and Cargo **Limited Quantity** Limited Quantity

Shipping name: TOXIC SOLID, ORGANIC, N.O.S. (contains bithionol)

Y644

Maritime Transport IMDG:

Packing Instructions:

IMDG Class: IMDG Subrisk: None 6.1 **UN Number:** 2811 Packing Group: Ш EMS Number: 274 F-A,S-A Special provisions: Limited Quantities: 500 q Marine Pollutant: Yes

Maximum Qty/Pack:

1 kg

Shipping name: TOXIC SOLID, ORGANIC, N.O.S. (contains bithionol)

Section 15 - REGULATORY INFORMATION

bithionol (CAS: 97-18-7) is found on the following regulatory lists;

"Canada List of Prohibited and Restricted Cosmetic Ingredients (The Cosmetic Ingredient ""Hotlist"")", "Canada Non-Domestic Substances List (NDSL)","OSPAR List of Substances of Possible Concern","US - Maine Chemicals of High Concern List","US -Massachusetts Oil & Hazardous Material List", "US - Pennsylvania - Hazardous Substance List", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory", "US TSCA Section 8 (d) - Health and Safety Data Reporting"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Skin contact may produce health damage*.
- Inhalation may produce serious health damage*.
- May produce skin discomfort*.
- Limited evidence of a carcinogenic effect*.
- Possible skin sensitiser*.

* (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance CAS Suggested codes bithionol 97- 18- 7 Tx; R28 N; R50/53

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.
- For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards:

OSHA Standards - 29 CFR:

1910.132 - Personal Protective Equipment - General requirements

1910.133 - Eye and face protection

1910.134 - Respiratory Protection

1910.136 - Occupational foot protection

1910.138 - Hand Protection

Eye and face protection - ANSI Z87.1

Foot protection - ANSI Z41

Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

www.Chemwatch.net

Issue Date: May-10-2011 Print Date:Mar-2-2012