Chrysene

sc-239555

The Power to Question

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Chrysene

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA FLAMM BILLITY HEALT AZARD INST BLITY

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY: ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C18-H12, benz[a]phenanthrene, benz-(alpha)-phenanthrene, "1, 2-benzophenanthrene", "1, 2-benzphenanthrene", "1, 2, 5, 6-dibenzonaphthalene", PAH, "polycyclic aromatic hydrocarbon"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max		
Flammability:	1				
Toxicity:	2				JV.
Body Contact:	2		Min/Nil=0 Low=1	2000	W-
Reactivity:	1		Moderate=2		177
Chronic:	3		High=3 Extreme=4		

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

May cause CANCER.

Possible risk of irreversible effects.

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Strong evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure.
- The material has NOT been classified as "harmful by ingestion".

This is because of the lack of corroborating animal or human evidence.

EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn).

Slight abrasive damage may also result.

SKIN

■ The material is not thought to be a skin irritant (as classified using animal models).

Abrasive damage however, may result from prolonged exposures.

- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHAL FD

■ The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models).

Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ There is ample evidence that this material can be regarded as being able to cause cancer in humans based on experiments and other information

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of

appropriate studies using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Polycyclic aromatic hydrocarbons are found in a number of materials such as coal tar, tobacco smoke, petroleum and air pollution. Some substituted derivatives have been identified as extremely liable to cause cancer, especially that of the lung and genito-urinary tract.

NAME Chrysene CAS RN % chrysene 218-01-9 >98

Section 4 - FIRST AID MEASURES

SWALLOWED

Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE

■ If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

 \cdot If dust is inhaled, remove from contaminated area. \cdot Encourage patient to blow nose to ensure clear passage of breathing. \cdot If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES				
Vapour Pressure (mmHG):	Negligible			
Upper Explosive Limit (%):	Not available			
Specific Gravity (water=1):	1.274			
Lower Explosive Limit (%):	Not available			

EXTINGUISHING MEDIA

- · Foam
- · Dry chemical powder.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.

When any large container (including road and rail tankers) is involved in a fire,

consider evacuation by 100 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- · Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- · Wear protective clothing, gloves, safety glasses and dust respirator.
- · Use dry clean up procedures and avoid generating dust.
- · Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- · Dampen with water to prevent dusting before sweeping.
- \cdot Place in suitable containers for disposal.

Environmental hazard - contain spillage.

MAJOR SPILLS

- · Clear area of personnel and move upwind.
- · Alert Emergency Responders and tell them location and nature of hazard.

Environmental hazard - contain spillage.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- \cdot Do NOT cut, drill, grind or weld such containers.
- · In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- · Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

■ Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
Canada - British Columbia Occupational Exposure Limits	chrysene (Chrysene Revised 2006)	(L)							2B
Occupational	chrysene (Coal tar pitch volatiles (benzene soluble fraction), anthrancene, BaP, phenanthrene, acidine, chrysene, pyrene)		0.2						
US - Alaska Limits for Air Contaminants	chrysene (Coal tar Pitch volatiles (benzene soluble fraction), chrysene)		0.2						
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	chrysene (Coal tar pitch volatiles (benzene soluble fraction), anthracene, BaP,phenanthrene,acridine, chrysene,pyrene)		0.2						
Canada - Alberta Occupational Exposure Limits	chrysene (Kerosene/Jet fuels, as total hydrocarbon vapour)		200						
Canada - Alberta Occupational Exposure Limits	chrysene (Diesel fuel, as total hydrocarbons)		100						
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	chrysene (Diesel fuel as total hydrocarbons, (vapour))		100		150				Skin
Canada - Northwest Territories Occupational Exposure Limits (English)	chrysene (Particulate polycyclic aromatic hydrocarbons (PPAH) as benzene solubles)		0.2		0.6				
Canada - Yukon Permissible Concentrations for Airborne Contaminant	chrysene (K Particulate polycyclic aromatic hydrocarbons (PPAH) (as benzene solubles))		(See Table 14)						

ENDOELTABLE

PERSONAL PROTECTION

RESPIRATOR

· particulate.

EYE

- · Safety glasses with side shields
- · Chemical goggles.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- · frequency and duration of contact,
- · chemical resistance of glove material.
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- · butyl rubber
- fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · Employees working with confirmed human carcinogens should be provided with, and be required to wear, clean, full body protective clothing (smocks, coveralls, or long-sleeved shirt and pants), shoe covers and gloves prior to entering the regulated area.
- · Employees engaged in handling operations involving carcinogens should be provided with, and required to wear and use half-face filter-type respirators with filters for dusts, mists and fumes, or air purifying canisters or cartridges. A respirator affording higher levels of protection may be substituted.
- · Emergency deluge showers and eyewash fountains, supplied with potable water, should be located near, within sight of, and on the same level with locations where direct exposure is likely.
- · Prior to each exit from an area containing confirmed human carcinogens, employees should be required to remove and leave protective clothing and equipment at the point of exit and at the last exit of the day, to place used clothing and equipment in impervious containers at the point of exit for purposes of decontamination or disposal. The contents of such impervious containers must be identified with suitable labels. For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood.
- · Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- · Overalls.
- · P.V.C. apron.
- Barrier cream.
- · Skin cleansing cream.
- · Eve wash unit.

ENGINEERING CONTROLS

- · Employees exposed to confirmed human carcinogens should be authorized to do so by the employer, and work in a regulated area.
- Work should be undertaken in an isolated system such as a "glove-box". Employees should wash their hands and arms upon completion of the assigned task and before engaging in other activities not associated with the isolated system.
- · Within regulated areas, the carcinogen should be stored in sealed containers, or enclosed in a closed system, including piping systems, with any sample ports or openings closed while the carcinogens are contained within.
- · Open-vessel systems are prohibited.
- Each operation should be provided with continuous local exhaust ventilation so that air movement is always from ordinary work areas to

the operation

- · Exhaust air should not be discharged to regulated areas, non-regulated areas or the external environment unless decontaminated. Clean make-up air should be introduced in sufficient volume to maintain correct operation of the local exhaust system.
- · For maintenance and decontamination activities, authorized employees entering the area should be provided with and required to wear clean, impervious garments, including gloves, boots and continuous-air supplied hood. Prior to removing protective garments the employee should undergo decontamination and be required to shower upon removal of the garments and hood.
- · Except for outdoor systems, regulated areas should be maintained under negative pressure (with respect to non-regulated areas).
- · Local exhaust ventilation requires make-up air be supplied in equal volumes to replaced air.
- · Laboratory hoods must be designed and maintained so as to draw air inward at an average linear face velocity of 150 feet/ min. with a minimum of 125 feet/ min. Design and construction of the fume hood requires that insertion of any portion of the employees body, other than hands and arms, be disallowed.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

Sinks in water.

Ommo m matem			
State	Divided solid	Molecular Weight	228.28
Melting Range (°F)	486- 489	Viscosity	Not Applicable
Boiling Range (°F)	838	Solubility in water (g/L)	Immiscible
Flash Point (°F)	Not available	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	1.274
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable
chrysene			
	log Kow (Prager 1995):		5.61-5.91
	log Kow (Sangster 1997):		5.86

APPEARANCE

Off-white powder; does not mix with water. Sublimes in vacuo. Exhibits strong fluorescence under UV light. Generally only slightly soluble in cold organic solvents; solubility improves markedly when heated.

log Kow 5.01-6.01

Material Value

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

chrysene

TOXICITY AND IRRITATION

CHRYSENE:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

OXICITY IRRITATION

Intraperitoneal (rat) LD50: >320 mg/kg Nil Reported

■ The substance is classified by IARC as Group 3:

NOT classifiable as to its carcinogenicity to humans.

Evidence of carcinogenicity may be inadequate or limited in animal testing.

NOTE: Substance has been shown to be mutagenic in at least one assay, or belongs to a family of chemicals producing damage or change to cellular DNA.

Target organs in include skin (tumours at site of application).

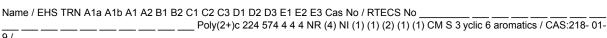
CARCINOGEN

CARCINOGEN				
chrysene		US - Rhode Island Hazardous Substance Lis	t IARC	
CHRYSENE		US Environmental Defens Scorecard Recognized Carcinogens	e Reference(s)	P65
CHRYSENE		US Environmental Defens Scorecard Suspected Carcinogens	e Reference(s)	P65
CHRYSENE/TRIPHENYLENE		US Environmental Defens Scorecard Suspected Carcinogens	e Reference(s)	P65-MC
POLYCYCLIC ORGANIC MATTER	R (POM)	US Environmental Defens Scorecard Suspected Carcinogens	e Reference(s)	EPA-HEN, P65-MC
Chrysene(BaP) (inhalation)		US Air Toxics Hot Spots TSD for Describing Available Cancer Potency Factors	IARC Class	3
Chrysene(BaP) (oral)		US Air Toxics Hot Spots TSD for Describing Available Cancer Potency Factors	IARC Class	
PBIT_(PERS~		US - Maine Chemicals of High Concern List	Carcinogen	CA Prop 65; IRIS
PBIT_(PERS~		US - Maine Chemicals of High Concern List	Carcinogen	
SKIN				
chrysene	Canada - Alberta Occi Limits - Skin	upational Exposure	Substance Interaction	1

Section 12 - ECOLOGICAL INFORMATION

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

This material and its container must be disposed of as hazardous waste.


Avoid release to the environment.

Refer to special instructions/ safety data sheets.

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
chrysene	I OW/	I OW/	HICH	$I \cap W$

GESAMP/EHS COMPOSITE LIST - GESAMP Hazard Profiles

Legend: EHS=EHS Number (EHS=GESAMP Working Group on the Evaluation of the Hazards of Harmful Substances Carried by Ships) NRT=Net Register Tonnage, A1a=Bioaccumulation log Pow, A1b=Bioaccumulation BCF, A1=Bioaccumulation, A2=Biodegradation, B1=Acuteaquatic toxicity LC/ECIC50 (mg/l), B2=Chronic aquatic toxicity NOEC (mg/l), C1=Acute mammalian oral toxicity LD50 (mg/kg), C2=Acutemammalian dermal toxicity LD50 (mg/kg), C3=Acute mammalian inhalation toxicity LC50 (mg/kg), D1=Skin irritation & corrosion, D2=Eye irritation& corrosion, D3=Long-term health effects, E1=Tainting, E2=Physical effects on wildlife & benthic habitats, E3=Interference with coastal amenities, For column A2: R=Readily biodegradable, NR=Not readily biodegradable. For column D3: C=Carcinogen, M=Mutagenic, R=Reprotoxic, S=Sensitising, A=Aspiration hazard, T=Target organ systemic toxicity, L=Lunginjury, N=Neurotoxic, I=Immunotoxic. For column E1: NT=Not tainting (tested), T=Tainting test positive. For column E2: Fp=Persistent floater, F=Floater, S=Sinking substances. The numerical scales start from 0 (no hazard), while higher numbers reflect increasing hazard.

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

B. Component Waste Numbers

When chrysene is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U050 (waste code T).

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

! Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- · Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols: G Hazard class or Division: 9 Identification Numbers: UN3077 PG: III Label Codes: 9 Special provisions: 8, 146, 335, B54,

IB8, IP3, N20, T1, TP33

Packaging: Exceptions: 155 Packaging: Non- bulk: 213 Packaging: Exceptions: 155 Quantity limitations: No limit

Passenger aircraft/rail:

Quantity Limitations: Cargo No limit Vessel stowage: Location: A

aircraft only:

Vessel stowage: Other: None

Hazardous materials descriptions and proper shipping names:

Environmentally hazardous substance, solid, n.o.s

Air Transport IATA:

ICAO/IATA Class: 9 ICAO/IATA Subrisk: None UN/ID Number: 3077 Packing Group: III

Special provisions: A97

Cargo Only

Packing Instructions: 400 kg Maximum Qty/Pack: 956 Passenger and Cargo Passenger and Cargo Packing Instructions: 400 kg Maximum Qty/Pack: 956

Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity

Packing Instructions: 30 kg G Maximum Qty/Pack: Y956

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID,

N.O.S. *(CONTAINS CHRYSENE)

Maritime Transport IMDG:

IMDG Class: 9 IMDG Subrisk: None UN Number: 3077 Packing Group: III EMS Number: F-A, S-F Special provisions: 179 274 335 909

Limited Quantities: 5 kg Marine Pollutant: Yes

Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.(contains chrysene)

Section 15 - REGULATORY INFORMATION

chrysene (CAS: 218-01-9) is found on the following regulatory lists;

"Canada - British Columbia Occupational Exposure Limits", "Canada - Nova Scotia Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits - Carcinogens", "Canada -Quebec Permissible Exposure Values for Airborne Contaminants (English)", "Canada ARET (Accelerated Reduction" / Elimination of Toxics) Substance List", "Canada Domestic Substances List (DSL)", "Canada Ingredient Disclosure List (SOR/88-64)", "Canada National Pollutant Release Inventory (NPRI)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System -WHMIS (English)","International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs","International Chemical Secretariat (ChemSec) REACH SIN* List (*Substitute It Now!) 1.0", "OSPAR List of Substances of Possible Concern", "US -Alaska Limits for Air Contaminants","US - California Air Toxics ""Hot Spots"" List (Assembly Bill 2588) Substances for which emissions must be quantified", "US - California Proposition 65 - Carcinogens", "US - California Proposition 65 - No Significant Risk Levels (NSRLs) for Carcinogens","US - California Toxic Air Contaminant List Category II","US - Connecticut Hazardous Air Pollutants","US - Idaho -Limits for Air Contaminants", "US - Maine Chemicals of High Concern List", "US - Massachusetts Oil & Hazardous Material List", "US -Minnesota Hazardous Substance List", "US - New Jersey Right to Know Hazardous Substances", "US - Pennsylvania - Hazardous Substance List", "US - Rhode Island Hazardous Substance List", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Vermont Hazardous Constituents", "US - Vermont Hazardous wastes which are Discarded Commercial Chemical Products or Off-Specification Batches of Commercial Chemical Products or Spill Residues of Either", "US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants", "US - Washington Dangerous waste constituents list", "US -Washington Discarded Chemical Products List - ""U"" Chemical Products". "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants", "US ACGIH Threshold Limit Values (TLV)", "US ACGIH Threshold Limit Values (TLV) - Carcinogens", "US CAA (Clean Air Act) - HON Rule - Organic HAPs (Hazardous Air Pollutants)"."US CERCLA Priority List of Hazardous Substances"."US CWA (Clean Water Act) - Priority Pollutants", "US Department of Transportation (DOT) List of Hazardous Substances and Reportable Quantities - Hazardous Substances Other Than Radionuclides", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US EPA Carcinogens Listing", "US EPA National Priorities List - Superfund Chemical Data Matrix (SCDM) - Hazard Ranking System - Hazardous Substance Benchmarks". "US List of Lists - Consolidated List of Chemicals Subject to EPCRA, CERCLA and Section 112(r) of the Clean Air Act","US RCRA (Resource Conservation & Recovery Act) - Appendix IX to Part 264 Ground-Water Monitoring List 1","US RCRA (Resource Conservation & Recovery Act) - Hazardous Constituents - Appendix VIII to 40 CFR 261", "US RCRA (Resource Conservation & Recovery Act) - List of Hazardous Inorganic and Organic Constituents 1","US RCRA (Resource Conservation & Recovery Act) - List of Hazardous Wastes", "US RCRA (Resource Conservation & Recovery Act) - Phase 4 LDR Rule - Universal Treatment Standards", "US -Texas Air Monitoring Comparison Values for Evaluating PAHs", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jan-5-2009 Print Date:May-24-2011