Dichlofluanid

sc-239695

Material Safety Data Sheet

Hazard Alert Code Key: **EXTREME HIGH MODERATE** LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Dichlofluanid

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc. Company: Santa Cruz Biotechnology, Inc.

Address: Address:

2145 Delaware Ave 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: United States of America

877-715-9305 Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: From outside the US and Canada: +800 2436 2255 Emergency Tel: ChemWatch

(1-800-CHEMCALL) or call +613 9573 3112 Emergency Tel: From within the US and Canada: 877-715-9305 From outside the US and Canada: 800-2436-2255 (1-800-

CHEMCALL) Or call 613-9573-3112

PRODUCT USE

■ Concentrate material is measured and mixed, preferably outdoors, in proportions as recommended by manufacturer. Application is by agricultural spray. Active chemical in wettable powder contact fungicide for black spot, leather rot and grey mould in strawberries; fungal diseases on orchard fruits from Botrytis spp., Alternaria spp. Not recommended for mixing with wetting agents, sticking agents, liquid insecticides, alkaline materials. Withholding period 1 day.

SYNONYMS

C8-H11-Cl2-F-N2-O2-S2, "sulfamide, N-[(dichlorofluoromethyl)thio]-N, N' -dimethyl-N-phenyl-", "N-[(dichlorofluoromethyl)thio]-N, N' -dimethyl-N-phenyl-", "N-[(dichlorofluoromethyl-", "N-[(dichlorofluoromethyl)thio]-N, N' -dimethyl-N-phenyl-", "N-[(dichlorofluoromethyl-", "N-[(dichlorofluoromethyl-", "N-[(N-[(dichlorofluoromethyl)thio]-N-[(dimethylamino)sulfonyl]-", -fluorodichloromethylthiosulfamide", N-[(dichlor of luor omethyl) thio]-N-[(dimethylamino) sulfonyl] aniline,"N, N-dimethyl-N' -phenyl-N' "N-(dichlorofluoromethylthio)-N', N'-dimethyl-N-phenylsulfamide", "Bayer BAY 47531", Dichlofluanid, Elvaron, Eparen, Euparene, "pesticide/ fungicide"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	1		Min/Nil=0
Toxicity:	4		Low=1 Moderate=2
Body Contact:	2		High=3
			Extreme=4

Reactivity: 1 Chronic: 2

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Very toxic if swallowed.

Danger of cumulative effects.

Irritating to eyes

May cause SENSITIZATION by skin contact.

Harmful by inhalation and in contact with skin.

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ Severely toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 5 gram may be fatal or may produce serious damage to the health of the individual.

EYE

■ This material can cause eye irritation and damage in some persons.

SKIN

- Skin contact with the material may be harmful; systemic effects may resultfollowing absorption.
- The material is not thought to be a skin irritant (as classified using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- Inhalation of dusts, generated by the material, during the course of normalhandling, may be harmful.
- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems. Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS				
NAME	CAS	RN	%	
dichlofluanide	1085	5-98-9	>98	

Section 4 - FIRST AID MEASURES

SWALLOWED

- .
- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
- Urgent hospital treatment is likely to be needed.
- If conscious, give water to drink.
- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down
 position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

FYF

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- .
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
 Perform CPR if necessary.
- Transport to hospital, or doctor.
- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear breathing passages.
- Ask patient to rinse mouth with water but to not drink water.
- Seek immediate medical attention.

NOTES TO PHYSICIAN

■ Treat symptomatically.

In cases of recent sulfonamide overdose the stomach should be emptied by aspiration and lavage. If kidney function is adequate, a saline purgative, such as sodium sulfate, 30 g in 250 ml water, may be given to promote peristalsis and elimination of sulfonamide in the urine may be assisted by giving alkalis, such as sodium bicarbonate and increasing fluid intake. Severe crystalluria may require ureteric catheterization and irrigation with warm 2.5% sodium bicarbonate solution. Treatment should be continued until it can be assumed that the sulfonamide has been eliminated. The majority of sulfonamides are metabolized to acetylated derivatives which retain the toxicity of the parent compound and thus may indicate more active removal when adverse effects are very severe. Active measures may include forced diuresis, peritoneal dialysis and charcoal hemoperfusion. [Martindale: The Extra Pharmacopoeia, 28th Ed.].

Section 5 - FIRE FIGHTING MEASURES				
Vapour Pressure (mmHG):	Not applicable.			
Upper Explosive Limit (%):	Not Available			
Specific Gravity (water=1):	0.5-0.8 Bulk D.			
Lower Explosive Limit (%):	Not Available			

EXTINGUISHING MEDIA

- •
- · Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- •
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and
 any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a
 particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen fluoride, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

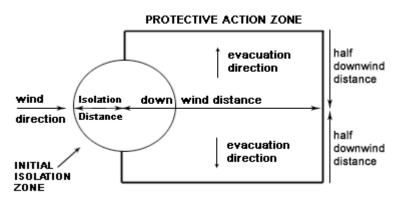
Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES


MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- _
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Neutralize/decontaminate residue.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)
Isolation Distance 25 meters
Downwind Protection Distance 250 meters

From US Emergency Response Guide 2000 Guide 151

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective

action distance

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide 151 is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- PROCEDURE I OR HAN
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

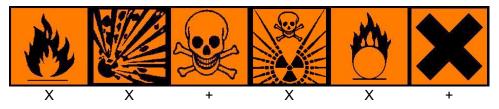
RECOMMENDED STORAGE METHODS

- Lined metal can, Lined metal pail/drum
- Plastic pail
- Polyliner drum
- Packing as recommended by manufacturer.
- Check all containers are clearly labeled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):


- Removable head packaging;
- Cans with friction closures and
- low pressure tubes and cartridges may be used.

- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages * . - In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *. - * unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z-3)	dichlofluanide (Inert or Nuisance Dust: Total dust)		10						(d)
US OSHA Permissible Exposure Levels (PELs) - Table Z3	dichlofluanide (Inert or Nuisance Dust: (d) Respirable fraction)		5						
US OSHA Permissible Exposure Levels (PELs) - Table Z3	dichlofluanide (Inert or Nuisance Dust: (d) Total dust)		15						
US - Hawaii Air Contaminant Limits	dichlofluanide (Particulates not other wise regulated - Total dust)		10						
US - Hawaii Air Contaminant Limits	dichlofluanide (Particulates not other wise regulated - Respirable fraction)		5						
US - Oregon Permissible Exposure Limits (Z-3)	dichlofluanide (Inert or Nuisance Dust: Respirable fraction)		5						(d)
US ACGIH Threshold Limit Values (TLV)	dichlofluanide (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)		10						See Appendix B current TLV/BEI Book
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	dichlofluanide (Particulates not otherwise regulated Respirable fraction)		5						
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	dichlofluanide (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)		5						
US - Michigan Exposure Limits for Air Contaminants	dichlofluanide (Particulates not otherwise regulated, Respirable dust)		5						
Canada - Prince Edward Island Occupational Exposure Limits	dichlofluanide (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)		10						See Appendix B current TLV/BEI Book

MATERIAL DATA

DICHLOFLUANIDE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- · cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- _
- Safety glasses with side shields.
- · Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ Wear chemical protective gloves, eg. PVC.

Wear safety footwear or safety gumboots, eg. Rubber.

NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- •
- Overalls.
- Eyewash unit.
- Barrier cream.
- Skin cleansing cream.

RESPIRATOR

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may
 be government mandated or vendor recommended.
- · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a

complete respiratory protection program.

- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Concentrate material is measured and mixed, preferably outdoors, in proportions as recommended by manufacturer.
- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a
 certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks

motion).

- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Mixes with water.

THE CONTRACTOR			
State	Divided solid	Molecular Weight	333.2
Melting Range (°F)	222.8	Viscosity	Not Applicable
Boiling Range (°F)	Not available.	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not Available	pH (1% solution)	Not applicable.
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not Available	Vapour Pressure (mmHG)	Not applicable.
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	0.5-0.8 Bulk D.
Lower Explosive Limit (%)	Not Available	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	Nil @ 38 C.	Evaporation Rate	Non Volatile

APPEARANCE

Whitish to grey powder; dispersible in water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

DICHLOFLUANIDE

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION
Oral (rat) LD50: 500 mg/kg
Nil Reported

Inhalation (rat) LD50: 300 mg/m³/4h

Dermal (rat) LD50: 1000 mg/kg

■ Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

ADI: 0.03 mg/kg/day NOEL: 2.7 mg/kg/day

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

DICHLOFLUANIDE:

Marine Pollutant: Yes

- Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

■ The sulfonamides are bipolar substances due to their polar functional groups with two pKa-values in the environmentally relevant pH-range. At low pH-values they are cationic due to protonation of the aniline group (pKa1). The isoelectric point is between pH 4 and 5, resulting in neutral species under slightly acidic conditions (pH 3 to 6). At higher pH-values the sulfonamides are anionic due to the

deprotonation of the sulfonamide nitrogen group (pKa2). As a consequence of this speciation, the partitioning and the reactivity are pH-dependent which plays an important role for assessing their environmental behavior as well as for their extraction from different matrices for chemical analysis.

Antibiotic sulfonamides, a structurally related group of substances, contain a similar 4-aminobenzene sulfonamide backbone, and are used in agriculture, aquaculture, animal husbandry, and also as human medicines.

After animal medication, they are excreted in high percentages of the administered amount, either as active substance or as acetyl conjugate. In manure, these sulfonamides are persistent. Furthermore the acetyl conjugates are cleaved into the active sulfonamide during manure storage, possibly by nucleophilic attack of ammonium at the carbonyl carbon. Concentrations ranging from 0.1 to more than 10 mg sulfonamide/ kg liquid manure translate into loads of some few grams to several hundred grams per hectare per application that may reach agricultural soils. On a plot scale, losses of sulfonamide antibiotics by surface run-off have been reported to vary from 0.1 to 28% of the applied amount. One reason for this high variability might be the different irrigation intensities ranging from a few mm per day to 100mm/2h . In a field study carried out on a macroporous tile-drained clay soil relative losses of a sulfonamide antibiotic amounted to 0.48% and 0.01% in two subsequent years.

Competing with p-aminobenzoic acid in the enzymatic synthesis of dihydrofolic acid, sulfonamides inhibit the growth and reproduction of bacteria. Once released to the environment, sulfonamides distribute themselves among different environmental compartments, along with their degradation products, and are transported to surface water and groundwater. The physiochemical properties, the dosage applied and the nature of the environmental components with which they interact, govern the whole process. Sulfonamides, as a class, are only partially sorptive, non persistent, and leachable. They cannot be characterised as readily biodegradable. Their adsorption to soil increases with the aromaticity and electronegativity of functional groups attached to the sulfonyl phenyl amine core. Preferential flow in clay soils has been identified as a mechanism responsible for surface water contamination by sulfonamides.

George W. Ware et al: Reviews of Environmental Contamination and Toxicology Vol 187, 2006 pp 67-101.

Twelve different sulfonamides were selected for a biodegradation study using a respirometric screening test and an activated sludge simulation test. A simple bacterial growth inhibition test was applied to show that the sulfonamides did not affect the bacteria at the concentration levels used. None of the compounds were degraded in the screening test, leading to the conclusion that sulfonamides cannot be classified as readily biodegradable. In the simulation test, primary degradation of mixtures of four compounds at concentration levels of 250 to 500 µg/L were tested and analysed using high-performance liquid chromatography. Biodegradation occurred after lag phases of 7 to 10 d at 20°C when nonadapted sludge was applied. Test compounds were degraded within a few days. At 6°C, degradation lag phases and degradation rates were three to four times longer. Sulfonamide adapted bacterial cultures were able to degrade either the same compounds as previously added or four other sulfonamides in a rapid and uniform way (t½ from 0.2 to 3 d). This finding shows that if capable of degrading one sulfonamide substance, these bacteria may also degrade many other sulfonamides. In practice, this implies that because the biodegradation rate is found to be identical for several sulfonamides in the sludge, the compounds may be assessed as a group by studying only a few compounds in applications such as environmental fate assessments. The mechanism for inducement of sulfonamide adaptation to the bacteria was not revealed in this study.

Flemming Ingerslev and Bent Halling-Sørensen: Environmental Toxicology and Chemistry pp 2467-2473.

Laboratory tests showed that phototoxicity resulting from exposure to continuous UVB light generally increased the acute toxicity of the sulfonamides in D. magna by up to 2.3-fold. However, pulsed UVB exposure resulted in a greater increase in phototoxicity. Compared to fluorescent light only (no UVB), pulsed UVB irradiation (96 h) resulted in 12.0-, 5.8-, and 4.4-fold increases in toxicity for sulfamethazine, sulfathiazole, and sulfamethoxazole, respectively. This suggests that the mode of UV irradiation is more important than the dose (UV-intensity × exposure time) for the photo-enhancement of sulfonamide toxicity. Natural sunlight enhanced the toxicity of the sulfonamides to an even greater degree, likely because of the contribution of UVA light. This study suggests that without taking into account the effects of UV irradiation, it is possible to underestimate the actual consequences of phototoxic sulfonamide antibiotics in the aquatic environment.

Jinyong Jung et al: Earth and Environmental Science. Vol 17, January 2008, pp 37-45.

■ DO NOT discharge into sewer or waterways.

Not toxic to bees

In plants dichlofluanid is metabolised to dimethylsulfanilide which is then demethylated/ hydroxylated.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility dichlofluanide HIGH LOW MED

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols:	None	Hazard class or Division:	6.1		
Identification Numbers:	UN2588	PG:	III		
Label Codes:	6.1	Special provisions:	IB8, IP3, T1, TP33		
Packaging: Exceptions:	153	Packaging: Non-bulk:	213		
Packaging: Exceptions:	153	Quantity limitations: Passenger aircraft/rail:	100 kg		
Quantity Limitations: Cargo aircraft only:	200 kg	Vessel stowage: Location:	A		
Vessel stowage: Other:	40				
Hazardous materials descriptions and proper shipping names:					

Hazardous materials descriptions and proper shipping names

Pesticides, solid, toxic, n.o.s.

Air Transport IATA:

ICAO/IATA Class:	6.1	ICAO/IATA Subrisk:	None
UN/ID Number:	2588	Packing Group:	III
Special provisions:	A3		

Shipping Name: PESTICIDE, SOLID, TOXIC, N.O.S. *(CONTAINS DICHLOFLUANIDE)

Maritime Transport IMDG:

IMDG Class:	6.1	IMDG Subrisk:	None
UN Number:	2588	Packing Group:	III
EMS Number:	F-A, S-A	Special provisions:	61 223 274
Limited Quantities:	5 kg	Marine Pollutant:	Yes

 $Shipping\ Name:\ PESTICIDE,\ SOLID,\ TOXIC,\ N.O.S. (contains\ dichlofluanide)$

Section 15 - REGULATORY INFORMATION

REGULATIONS

dichlofluanide (CAS: 1085-98-9) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)","OECD Representative List of High Production Volume (HPV) Chemicals"

Section 16 - OTHER INFORMATION

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

■ Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the

reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: May-31-2008 Print Date:Aug-5-2010