

Ethyl chlorooxoacetate

sc-239923

The Power to Question

Material Safety Data Sheet

Hazard Alert Code
Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Ethyl chlorooxoacetate

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch
Within the US & Canada: 877-715-9305
Outside the US & Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

SYNOMYS

C4-H5-Cl-O3, C2H5CO2COCl, "ethyl chloroglyoxylate", "oxalic acid monoethyl ester chloride"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability	3		
Toxicity	2		
Body Contact	4		
Reactivity	2		
Chronic	2		

Min/Nil=0
Low=1
Moderate=2
High=3
Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Reacts violently with water.
Harmful if swallowed.
Causes severe burns.
Risk of serious damage to eyes.
Flammable.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Ingestion of acidic corrosives may produce burns around and in the mouth, the throat and esophagus.

EYE

- The material can produce severe chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
- If applied to the eyes, this material causes severe eye damage.
- Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely.
- Irritation of the eyes may produce a heavy secretion of tears (lachrymation).

SKIN

- The material can produce severe chemical burns following direct contact with the skin.
- Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.
- Skin contact is not thought to produce harmful health effects (as classified using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness.
- Inhalation hazard is increased at higher temperatures.
- Hydrogen chloride (HCl) vapour or fumes present a hazard from a single acute exposure. Exposures of 1300 to 2000 ppm have been lethal to humans in a few minutes.

Inhalation of HCl may cause choking, coughing, burning sensation and may cause ulceration of the nose, throat and larynx. Fluid on the lungs followed by generalised lung damage may follow.

Breathing of HCl vapour may aggravate asthma and inflammatory or fibrotic pulmonary disease.

High concentrations cause necrosis of the tracheal and bronchial epithelium, pulmonary oedema, atelectasis and emphysema and damage to the pulmonary blood vessels and liver.

CHRONIC HEALTH EFFECTS

- Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and or ulceration of mouth

lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Chronic minor exposure to hydrogen chloride (HCl) vapour or fume may cause discolouration or erosion of the teeth, bleeding of the nose and gums; and ulceration of the nasal mucous membranes. Repeated exposures of animals to concentrations of about 34 ppm HCl produced no immediate toxic effects. Workers exposed to hydrochloric acid suffered from gastritis and a number of cases of chronic bronchitis have also been reported. Repeated or prolonged exposure to dilute solutions of HCl may cause dermatitis.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
ethyl oxalyl chloride	4755-77-5	> 98
NOTE Exposure to moisture causes decomposition to hydrogen chloride	7647-01-0	

Section 4 - FIRST AID MEASURES

SWALLOWED

- For advice, contact a Poisons Information Center or a doctor at once.
- Urgent hospital treatment is likely to be needed.

EYE

If this product comes in contact with the eyes

- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

If skin or hair contact occurs

- Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.

Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g.

NOTES TO PHYSICIAN

- For acute or short term repeated exposures to strong acids
- Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG)	Not available.
Upper Explosive Limit (%)	Not available.
Specific Gravity (water=1)	1.222
Lower Explosive Limit (%)	Not available.

EXTINGUISHING MEDIA

- DO NOT use water.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- May be violently or explosively reactive.

When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 1000 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

Combustion products include carbon dioxide (CO₂), carbon monoxide (CO), hydrogen chloride, phosgene, other pyrolysis products typical of burning organic material.

May emit corrosive fumes.

- Flammable.
- Moderate fire and explosion hazard when exposed to heat or flame.

FIRE INCOMPATIBILITY

Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.

MAJOR SPILLS

Chemical Class acidic compounds, organic

For release onto land recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
LAND SPILL - SMALL				
wood fiber - pillow	1	throw	pitchfork	R, P, DGC, RT
cross-linked polymer - particulate	1	shovel	shovel	R, W, SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R, I, P
foamed glass - pillow	2	throw	pitchfork	R, P, DGC, RT
wood fiber - particulate	3	shovel	shovel	R, W, P, DGC
LAND SPILL - MEDIUM				
cross-linked polymer - particulate	1	blower	skiploader	R, W, SS
polypropylene - particulate	2	blower	skiploader	W, SS, DGC
sorbent clay - particulate	2	blower	skiploader	R, I, P
cross-linked polymer - pillow	3	throw	skiploader	R, DGC, RT
polypropylene - mat	3	throw	skiploader	W, SS, DGC
expanded mineral - particulate	3	blower	skiploader	R, I, W, P, DGC

Legend

DGC Not effective where ground cover is dense

R; Not reusable

I Not incinerable

P Effectiveness reduced when rainy

RT Not effective where terrain is rugged

SS Not for use within environmentally sensitive sites

W Effectiveness reduced when windy

Reference Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al Pollution Technology Review No. 150 Noyes Data Corporation 1988.

- Clear area of personnel and move upwind.

- Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Containers, even those that have been emptied, may contain explosive vapours.
- Do NOT cut, drill, grind, weld or perform similar operations on or near containers.

RECOMMENDED STORAGE METHODS

- Lined metal can. Lined metal drum. Lined metal safety cans.
- Packing as supplied and/or recommended by manufacturer.
- Plastic lining or containers may only be used if approved for flammable liquid (non-polar type).
- Check that containers are clearly labelled and free from leaks.

DO NOT use aluminum or galvanized containers.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.

Check regularly for spills and leaks.

STORAGE REQUIREMENTS

- Store in approved flammable liquid storage area.
- No smoking, naked lights/ignition sources.
- Keep containers securely sealed.
- Store away from incompatible materials in a cool, dry, well-ventilated area.
- Protect containers against physical damage and check regularly for leaks.
- Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel - adequate security must be provided so that unauthorised personnel do not have access.
- Store in grounded, properly designed and approved vessels and away from incompatible materials
- Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances.
- Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems.
- Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers - dry chemical, foam or carbon dioxide) and flammable gas detectors.
- Keep adsorbents for leaks and spills readily available
- For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ice build-up; storage tanks should be above ground and diked to hold entire contents
- Observe manufacturer's storing and handling recommendations.

May decompose in water

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m ³	STEL ppm	STEL mg/m ³	Peak ppm	Peak mg/m ³	TWA F/CC	Notes
Canada - Alberta Occupational Exposure Limits	ethyl oxalyl chloride (Hydrogen chloride)					2	3		
Canada - British Columbia Occupational Exposure Limits Revised 2003	ethyl oxalyl chloride (Hydrogen chloride)					2			
US - Minnesota Permissible Exposure Limits (PELs)	ethyl oxalyl chloride (Hydrogen chloride)					5	7		
US NIOSH Recommended Exposure Limits (RELs)	ethyl oxalyl chloride (Hydrogen chloride)					5	7		
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	ethyl oxalyl chloride (Hydrogen chloride)					5	7		
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants	ethyl oxalyl chloride (Hydrogen chloride)			(C)5	(C)7				
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	ethyl oxalyl chloride (Hydrogen chloride)					5	7		
US - California Permissible Exposure Limits for Chemical Contaminants	ethyl oxalyl chloride (Hydrogen chloride; muriatic acid)	5	7					C	
US - Idaho - Limits for Air Contaminants	ethyl oxalyl chloride (Hydrogen chloride)					5	7		
US - Hawaii Air Contaminant Limits	ethyl oxalyl chloride (Hydrogen chloride)					5	7		
US - Alaska Limits for Air Contaminants	ethyl oxalyl chloride (Hydrogen chloride)					5	7		
US - Michigan Exposure Limits for Air Contaminants	ethyl oxalyl chloride (Hydrogen chloride)					5	7		

	chloride)				
Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances	ethyl oxalyl chloride (Hydrogen chloride)	5	7	-	-
US - Washington Permissible exposure limits of air contaminants	ethyl oxalyl chloride (Hydrogen chloride)			5.0	
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	ethyl oxalyl chloride (Hydrogen chloride)			2	
US - Oregon Permissible Exposure Limits (Z-1)	ethyl oxalyl chloride (Hydrogen chloride)		5	7	
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	ethyl oxalyl chloride (Hydrogen chloride)		5	7	
Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)	ethyl oxalyl chloride (Hydrogen chloride)		5	7,5	
US OSHA Permissible Exposure Levels (PELs) - Table Z1	ethyl oxalyl chloride (Hydrogen chloride)		5	7	
Canada - Northwest Territories Occupational Exposure Limits (English)	ethyl oxalyl chloride (Hydrogen chloride)		5	7.5	
Canada - Nova Scotia Occupational Exposure Limits	ethyl oxalyl chloride (Hydrogen chloride)		2		TLV Basis upper respiratory tract irritation
Canada - Prince Edward Island Occupational Exposure Limits	ethyl oxalyl chloride (Hydrogen chloride)		2		TLV Basis upper respiratory tract irritation

PERSONAL PROTECTION

RESPIRATOR

•Type AB-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 1432000 & 1492001, ANSI Z88 or national

equivalent)

EYE

- Chemical goggles.
- Full face shield.

HANDS/FEET

Elbow length PVC gloves.

- When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly.

Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- PVC Apron.
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets), non sparking safety footwear.

ENGINEERING CONTROLS

Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Corrosive.

Acid.

Reacts violently with water.

State	LIQUID	Molecular Weight	136.53
Melting Range (°F)	Not available.	Viscosity	Not Available
Boiling Range (°F)	275	Solubility in water (g/L)	Reacts
Flash Point (°F)	107	pH (1% solution)	Not available
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not available
Autoignition Temp (°F)	Not available.	Vapour Pressure (mmHG)	Not available.
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	1.222
Lower Explosive Limit (%)	Not available.	Relative Vapor Density (air=1)	Not available.
Volatile Component (%vol)	Not available	Evaporation Rate	Not available

APPEARANCE

Liquid; hydrolyses

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Contact with alkaline material liberates heat

STORAGE INCOMPATIBILITY

| Hydrogen chloride

- reacts strongly with strong oxidisers (releasing chlorine gas), acetic anhydride, caesium cyanotridecahydrodecaborate(2-), ethylidene difluoride, hexolithium disilicide, metal acetylides, sodium, silicon dioxide, tetraselenium tetranitride, and many organic materials
- is incompatible with alkaline materials, acetic anhydride, acetylides, aliphatic amines, alkanolamines, alkylene oxides, aluminium, aluminium-titanium alloys, aromatic amines, amines, amides, 2-aminoethanol, ammonia, ammonium hydroxide, borides, calcium phosphide, carbides, carbonates, cyanides, chlorosulfonic acid, ethylenediamine, ethyleneimine, epichlorohydrin, formaldehyde, isocyanates, metals, metal oxides, metal hydroxides, metal acetylides, metal carbides, oleum, organic anhydrides, potassium permanganate, perchloric acid, phosphides, 3-propiolactone, silicides, sulfides, sulfites, sulfuric acid, uranium phosphide, vinyl acetate, vinylidene fluoride
- attacks most metals forming flammable hydrogen gas, and some plastics, rubbers and coatings
- reacts with zinc, brass, galvanised iron, aluminium, copper and copper alloys

Reacts with mild steel, galvanized steel / zinc producing hydrogen gas which may form an explosive mixture with air.

Segregate from alcohol, water.

Segregate from alkalis, oxidizing agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.

- Avoid strong bases.
- NOTE May develop pressure in containers; open carefully. Vent periodically.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

ethyl oxalyl chloride

TOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

ETHYL OXALYL CHLORIDE

No significant acute toxicological data identified in literature search.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

HYDROGEN CHLORIDE

TOXICITY

IRRITATION

Inhalation (human) LC_{Lo} 1300 ppm/30m

Eye (rabbit) 5 mg/30s - Mild

Inhalation (human) LC_{Lo} 3000 ppm/5m

Inhalation (rat) LC₅₀ 3124 ppm/60m

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

4701 ppm/30m

CARCINOGEN

hydrogen chloride	International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs	Group	3
hydrogen chloride	International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs	Group	1
Hydrogen chloride	US ACGIH Threshold Limit Values (TLV) - Carcinogens	Carcinogen Category	A4
hydrogen chloride	US - Rhode Island Hazardous Substance List	IARC	
TWAPPM~	US - Maine Chemicals of High Concern List	Carcinogen	A4
TWAPPM~	Canada - Prince Edward Island Occupational Exposure Limits - Carcinogens	Notes	TLV Basis upper respiratory tract irritation

Section 12 - ECOLOGICAL INFORMATION

This material and its container must be disposed of as hazardous waste.

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Ignitability characteristic: use EPA hazardous waste number D001 (waste code I)

Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols:	None	Hazard class or Division:	8
Identification Numbers:	UN2920	PG:	II
Label Codes:	8, 3	Special provisions:	B2, IB2, T11, TP2, TP27
Packaging: Exceptions:	None	Packaging: Non-bulk:	202

Packaging: Exceptions:	None	Quantity limitations:	
		Passenger aircraft/rail:	1 L

Quantity Limitations: Cargo aircraft only:	30 L	Vessel stowage: Location:	C
--	------	---------------------------	---

Vessel stowage: Other:	25, 40
------------------------	--------

Hazardous materials descriptions and proper shipping names:

Corrosive liquids, flammable, n.o.s.

Air Transport IATA:

ICAO/IATA Class:	8 (3)	ICAO/IATA Subrisk:	None
UN/ID Number:	2920	Packing Group:	II
Special provisions:	None		

Cargo Only			
------------	--	--	--

Packing Instructions:	855	Maximum Qty/Pack:	30 L
Passenger and Cargo		Passenger and Cargo	

Packing Instructions:	851	Maximum Qty/Pack:	1 L
Passenger and Cargo		Passenger and Cargo	

Limited Quantity		Limited Quantity	
------------------	--	------------------	--

Packing Instructions:	Y840	Maximum Qty/Pack:	0.5 L
-----------------------	------	-------------------	-------

Shipping Name: CORROSIVE LIQUID, FLAMMABLE, N.O.S.

*(CONTAINS ETHYL OXALYL CHLORIDE)

Maritime Transport IMDG:

IMDG Class:	8	IMDG Subrisk:	3
UN Number:	2920	Packing Group:	II

EMS Number:	F-E,S-C	Special provisions:	274
-------------	---------	---------------------	-----

Limited Quantities:	1 L		
---------------------	-----	--	--

Shipping Name: CORROSIVE LIQUID, FLAMMABLE, N.O.S.(contains ethyl oxalyl chloride)

Section 15 - REGULATORY INFORMATION

ethyl oxalyl chloride (CAS: 4755-77-5) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

Regulations for ingredients

hydrogen chloride (CAS: 7647-01-0) is found on the following regulatory lists;

"Canada - Alberta Ambient Air Quality Objectives", "Canada - Alberta Occupational Exposure Limits", "Canada - British Columbia Occupational Exposure Limits", "Canada - Northwest Territories Occupational Exposure Limits (English)", "Canada - Nova Scotia Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits - Carcinogens", "Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)", "Canada - Saskatchewan Industrial Hazardous Substances", "Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits", "Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances", "Canada Domestic Substances List (DSL)", "Canada Ingredient Disclosure List (SOR/88-64)", "Canada National Pollutant Release Inventory (NPRI)", "Canada Prohibited Toxic Substances, Schedule 2, Concentration Limits (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "CODEX General Standard for Food Additives (GSFA) - Additives Permitted for Use in Food in General, Unless Otherwise

Specified, in Accordance with GMP", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "IMO IBC Code Chapter 17: Summary of minimum requirements", "IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk", "International Agency for Research on Cancer (IARC) - Agents Reviewed by the IARC Monographs", "International Council of Chemical Associations (ICCA) - High Production Volume List", "International Maritime Dangerous Goods Requirements (IMDG Code) - Goods Forbidden for Transport", "United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic Substances - Table II", "United Nations List of Precursors and Chemicals Frequently used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances Under International Control (Red List) - Table II", "US - Alaska Limits for Air Contaminants", "US - California Air Toxics ""Hot Spots"" List (Assembly Bill 2588) Substances for which emissions must be quantified", "US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List", "US - California OEHHA/ARB - Acute Reference Exposure Levels and Target Organs (RELs)", "US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - California Toxic Air Contaminant List Category II", "US - Connecticut Hazardous Air Pollutants", "US - Florida Essential Chemicals", "US - Hawaii Air Contaminant Limits", "US - Idaho - Limits for Air Contaminants", "US - Massachusetts Oil & Hazardous Material List", "US - Michigan Exposure Limits for Air Contaminants", "US - Minnesota Hazardous Substance List", "US - Minnesota Permissible Exposure Limits (PELs)", "US - New Jersey Right to Know Hazardous Substances", "US - Oregon Hazardous Materials", "US - Oregon Permissible Exposure Limits (Z-1)", "US - Pennsylvania - Hazardous Substance List", "US - Rhode Island Hazardous Substance List", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants", "US - Washington Permissible exposure limits of air contaminants", "US - Wyoming List of Highly Hazardous Chemicals, Toxics and Reactives", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants", "US ACGIH Threshold Limit Values (TLV)", "US ACGIH Threshold Limit Values (TLV) - Carcinogens", "US Clean Air Act - Hazardous Air Pollutants", "US CWA (Clean Water Act) - List of Hazardous Substances", "US CWA (Clean Water Act) - Reportable Quantities of Designated Hazardous Substances", "US Department of Homeland Security Chemical Facility Anti-Terrorism Standards - Chemicals of Interest", "US Department of Transportation (DOT) List of Hazardous Substances and Reportable Quantities - Hazardous Substances Other Than Radionuclides", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Drug Enforcement Administration (DEA) List I and II Regulated Chemicals", "US EPA Acute Exposure Guideline Levels (AEGLs) - Final", "US EPA High Production Volume Chemicals Additional List", "US EPA Master Testing List - Index I Chemicals Listed", "US EPCRA Section 313 Chemical List", "US Food Additive Database", "US List of Lists - Consolidated List of Chemicals Subject to EPCRA, CERCLA and Section 112(r) of the Clean Air Act", "US NFPA 45 Fire Protection for Laboratories Using Chemicals - Flammability Characteristics of Common Compressed and Liquefied Gases", "US NIOSH Recommended Exposure Limits (RELs)", "US OSHA List of Highly Hazardous Chemicals, Toxics and Reactives", "US OSHA Permissible Exposure Levels (PELs) - Table Z1", "US Postal Service (USPS) Hazardous Materials Table: Postal Service Mailability Guide", "US SARA Section 302 Extremely Hazardous Substances", "US Spacecraft Maximum Allowable Concentrations (SMACs) for Airborne Contaminants", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.

* (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance	CAS	Suggested codes
ethyl oxalyl chloride	4755- 77- 5	Xi; R38
hydrogen chloride	7647- 01- 0	Xi; R38

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:
www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

www.chemwatch.net

Issue Date: Apr-5-2010

Print Date:Oct-27-2011