Malondialdehyde tetrabutylammonium salt sc-250289 **Material Safety Data Sheet** The Power to Quantion Hazard Alert Code Key: **EXTREME** HIGH **MODERATE** LOW # Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION # **PRODUCT NAME** Malondialdehyde tetrabutylammonium salt # STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. # **NFPA** # **SUPPLIER** Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 #### **EMERGENCY** ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 # **PRODUCT USE** ■ Intermediate. # **SYNONYMS** C19-H39-N-O2, OCHCH=CH0[N(CH2CH2CH3)4], "malonaldehyde tetrabutylammonium salt", "tetrabutylammonium malondialdehyde enolate", "quaternary ammonium compound" # **Section 2 - HAZARDS IDENTIFICATION** # **CHEMWATCH HAZARD RATINGS** #### **CANADIAN WHMIS SYMBOLS** # **EMERGENCY OVERVIEW RISK** Harmful if swallowed. Causes severe burns. Risk of serious damage to eyes. Toxic to aquatic organisms. #### **POTENTIAL HEALTH EFFECTS** #### **ACUTE HEALTH EFFECTS** #### **SWALLOWED** - The material can produce severe chemical burns within the oral cavity and gastrointestinal tract following ingestion. - Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. - Ingestion of alkaline corrosives may produce burns around the mouth, ulcerations and swellings of the mucous membranes, profuse saliva production, with an inability to speak or swallow. Both the esophagus and stomach may experience burning pain; vomiting and diarrhea may follow. ■ Concentrated solutions of many cationics may cause corrosive damage to mucous membranes and the esophagus. Nausea and vomiting (sometimes bloody) may follow ingestion. - If applied to the eyes, this material causes severe eye damage. - Direct eye contact with corrosive bases can cause pain and burns. There may be swelling, epithelium destruction, clouding of the cornea and inflammation of the iris. ■ The material can produce severe chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating. #### SKIN - The material can produce severe chemical burns following direct contactwith the skin. - Skin contact is not thought to produce harmful health effects (as classified using animal models). Systemic harm, however, has been identified following exposure of animals by at least one other route and the material may still produce health damage following entry through wounds, lesions or abrasions. ■ Skin contact with alkaline corrosives may produce severe pain and burns; brownish stains may develop. The corroded area may be soft, gelatinous and necrotic; tissue destruction may be deep. - Open cuts, abraded or irritated skin should not be exposed to this material. - Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. ■ Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction. # **INHALED** ■ The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. ■ Inhaling corrosive bases may irritate the respiratory tract. Symptoms include cough, choking, pain and damage to the mucous membrane. ■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. # **CHRONIC HEALTH EFFECTS** ■ Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is some evidence that inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population. There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following. Respiratory sensitization may result in allergic/asthma like responses; from coughing and minor breathing difficulties to bronchitis with wheezing, gasping. # Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS % NAME CAS RN # **Section 4 - FIRST AID MEASURES** #### **SWALLOWED** · For advice, contact a Poisons Information Center or a doctor at once. · Urgent hospital treatment is likely to be needed. #### FYF ■ If this product comes in contact with the eyes: · Immediately hold eyelids apart and flush the eye continuously with running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. #### SKIN ■ If skin or hair contact occurs: · Immediately flush body and clothes with large amounts of water, using safety shower if available. · Quickly remove all contaminated clothing, including footwear. #### **INHALED** · If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested. Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g. #### **NOTES TO PHYSICIAN** - For acute or short-term repeated exposures to highly alkaline materials: - · Respiratory stress is uncommon but present occasionally because of soft tissue edema. - · Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary. For exposures to quaternary ammonium compounds; - · For ingestion of concentrated solutions (10% or higher): Swallow promptly a large quantity of milk, egg whites / gelatin solution. If not readily available, a slurry of activated charcoal may be useful. Avoid alcohol. Because of probable mucosal damage omit gastric lavage and emetic drugs. - · For dilute solutions (2% or less): If little or no emesis appears spontaneously, administer syrup of Ipecac or perform gastric lavage. | Section 5 - FIRE FIGHTING MEASURES | | | | | | |------------------------------------|-----------------|--|--|--|--| | Vapour Pressure (mmHG): | Not applicable. | | | | | | Upper Explosive Limit (%): | Not available | | | | | | Specific Gravity (water=1): | Not available. | | | | | | Lower Explosive Limit (%): | Not available | | | | | #### **EXTINGUISHING MEDIA** - · Water spray or fog. - · Foam. # **FIRE FIGHTING** - · Alert Emergency Responders and tell them location and nature of hazard. - · Wear full body protective clothing with breathing apparatus. When any large container (including road and rail tankers) is involved in a fire, consider evacuation by 800 metres in all directions. # GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS - · Combustible solid which burns but propagates flame with difficulty. - · Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited. Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material. May emit corrosive fumes. #### FIRE INCOMPATIBILITY ■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result. #### PERSONAL PROTECTION Glasses: Safety Glasses. Full face- shield. Gloves: Respirator: Particulate dust filter. # **Section 6 - ACCIDENTAL RELEASE MEASURES** #### MINOR SPILLS - · Remove all ignition sources. - · Clean up all spills immediately. - · Avoid contact with skin and eyes. - · Control personal contact by using protective equipment. - · Use dry clean up procedures and avoid generating dust. - · Place in a suitable, labelled container for waste disposal. - · Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material. - · Check regularly for spills and leaks. MAJOR SPILLS - · Clear area of personnel and move upwind. - · Alert Emergency Responders and tell them location and nature of hazard. # **Section 7 - HANDLING AND STORAGE** # PROCEDURE FOR HANDLING - · Avoid all personal contact, including inhalation. - · Wear protective clothing when risk of exposure occurs. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - · Do NOT cut, drill, grind or weld such containers. - · In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. #### **RECOMMENDED STORAGE METHODS** - · Lined metal can, Lined metal pail/drum - · Plastic pail. For low viscosity materials - · Drums and jerricans must be of the non-removable head type. - · Where a can is to be used as an inner package, the can must have a screwed enclosure. #### STORAGE REQUIREMENTS - · Store in original containers. - · Keep containers securely sealed. DO NOT store near acids, or oxidizing agents. · No smoking, naked lights, heat or ignition sources. Moisture- and light-sensitive. # **Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION** #### **EXPOSURE CONTROLS** | Source | Material | TWA ppm | TWA
mg/m³ | STEL ppm | STEL
mg/m³ | Peak ppm | Peak
mg/m³ | TWA
F/CC | Notes | |--|--|---------|--------------|----------|---------------|----------|---------------|-------------|---| | US - California
Permissible
Exposure Limits
for Chemical
Contaminants | malondialdehyde
tetrabutylammonium
salt (Particulates not
otherwise regulated
Respirable fraction) | | 5 | | | | | | (n) | | US - Tennessee
Occupational
Exposure Limits
- Limits For Air
Contaminants | malondialdehyde
tetrabutylammonium
salt (Particulates not
otherwise regulated
Respirable fraction) | | 5 | | | | | | | | US - Wyoming
Toxic and
Hazardous
Substances
Table Z1 Limits
for Air
Contaminants | malondialdehyde
tetrabutylammonium
salt (Particulates not
otherwise regulated
(PNOR)(f)- Respirable
fraction) | | 5 | | | | | | | | US - Michigan
Exposure Limits
for Air
Contaminants | malondialdehyde
tetrabutylammonium
salt (Particulates not
otherwise regulated,
Respirable dust) | | 5 | | | | | | | | Canada - Prince
Edward Island
Occupational
Exposure Limits | malondialdehyde
tetrabutylammonium
salt (Particles (Insoluble
or Poorly Soluble)
[NOS] Inhalable
particles) | | 10 | | | | | | See
Appendix
B current
TLV/BEI
Book | **ENDOELTABLE** #### PERSONAL PROTECTION #### **RESPIRATOR** BR2 Consult your EHS staff for recommendations #### **EYE** - · Chemical goggles. - · Full face shield. # HANDS/FEET ■ Elbow length PVC gloves. NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as: - · frequency and duration of contact, - · chemical resistance of glove material, - · glove thickness and - · dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended. - · Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. #### OTHER - · Overalls. - · PVC Apron. #### **ENGINEERING CONTROLS** - · Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. - Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace. # **Section 9 - PHYSICAL AND CHEMICAL PROPERTIES** # **PHYSICAL PROPERTIES** Mixes with water. Corrosive. Alkaline. | State | DIVIDED SOLID | Molecular Weight | 313.53 | |---------------------------|-----------------|--------------------------------|-----------------| | Melting Range (°F) | 258.8- 262.4 | Viscosity | Not available | | Boiling Range (°F) | Not available | Solubility in water (g/L) | Miscible | | Flash Point (°F) | Not available | pH (1% solution) | Not available. | | Decomposition Temp (°F) | Not available | pH (as supplied) | Not applicable | | Autoignition Temp (°F) | Not available | Vapour Pressure (mmHG) | Not applicable. | | Upper Explosive Limit (%) | Not available | Specific Gravity (water=1) | Not available. | | Lower Explosive Limit (%) | Not available | Relative Vapor Density (air=1) | Not applicable | | Volatile Component (%vol) | Not applicable. | Evaporation Rate | Not applicable | #### **APPEARANCE** Hygroscopic solid; mixes with water. # **Section 10 - CHEMICAL STABILITY** # **CONDITIONS CONTRIBUTING TO INSTABILITY** - · Presence of incompatible materials. - · Product is considered stable. #### STORAGE INCOMPATIBILITY - Avoid strong acids. - · Avoid contact with copper, aluminium and their alloys. Avoid reaction with oxidizing agents. For incompatible materials - refer to Section 7 - Handling and Storage. # **Section 11 - TOXICOLOGICAL INFORMATION** MALONDIALDEHYDE TETRABUTYLAMMONIUM SALT #### **TOXICITY AND IRRITATION** #### MALONDIALDEHYDE TETRABUTYLAMMONIUM SALT: - unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances. - Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. # For quaternary ammonium compounds (QACs): Quaternary ammonium compounds (QACs) are cationic surfactants. They are synthetic organically tetra-substituted ammonium compounds, where the R substituents are alkyl or heterocyclic radicals. A common characteristic of these synthetic compounds is that one of the R's is a long-chain hydrophobic aliphatic residue The cationic surface active compounds are in general more toxic than the anionic and non-ionic surfactants. The positively-charged cationic portion is the functional part of the molecule and the local irritation effects of QACs appear to result from the quaternary ammonium cation. Due to their relative ability to solubilise phospholipids and cholesterol in lipid membranes, QACs affect cell permeability which may lead to cell death. Further QACs denature proteins as cationic materials precipitate protein and are accompanied by generalised tissue irritation. It has been suggested that the experimentally determined decrease in acute toxicity of QACs with chain lengths above C16 is due to decreased water solubility. In general it appears that QACs with a single long-chain alkyl groups are more toxic and irritating than those with two such substitutions, The straight chain aliphatic QACs have been shown to release histamine from minced guinea pig lung tissue However, studies with benzalkonium chloride have shown that the effect on histamine release depends on the concentration of the solution. When cell suspensions (11% mast cells) from rats were exposed to low concentrations, a decrease in histamine release was seen. When exposed to high concentrations the opposite result was obtained. In addition, QACs may show curare-like properties (specifically benzalkonium and cetylpyridinium derivatives, a muscular paralysis with no involvement of the central nervous system. This is most often associated with lethal doses Parenteral injections in rats, rabbits and dogs have resulted in prompt but transient limb paralysis and sometimes fatal paresis of the respiratory muscles. This effect seems to be transient. From human testing of different QACs the generalised conclusion is obtained that all the compounds investigated to date exhibit similar toxicological properties. Acute toxicity: Studies in rats have indicated poor intestinal absorption of QACs. Acute toxicity of QACs varies with the compound and, especially, the route of administration. For some substances the LD50 value is several hundreds times lower by the i.p. or i.v. than the oral route, whereas toxicities between the congeners only differ in the range of two to five times. At least some QACs are significantly more toxic in 50% dimethyl sulfoxide than in plain water when given orally Probably all common QAC derivatives produce similar toxic reactions, but as tested in laboratory animals the oral mean lethal dose varies with the compound . Oral toxicity: LD50 values for QACs have been reported within the range of 250-1000 mg/kg for rats, 150-1000 mg/kg for mice, 150-300 mg/kg for guinea pigs and about 500 mg/kg b.w. for rabbits and dogs. The ranges observed reflect differences in the study designs of these rather old experiments as well as differences between the various QACs. The oral route of administration was characterised by delayed deaths, gastrointestinal lesions and respiratory and central nervous system depression. It was also found that given into a full stomach, the QACs lead to lower mortality and fewer gastrointestinal symptoms. This support the suggestion of an irritating effect Dermal toxicity: It has been concluded that the maximum concentration that did not produce irritating effect on intact skin is 0.1%. Irritation became manifest in the 1-10% range. Concentrations below 0.1% have caused irritation in persons with contact dermatitis or broken skin. Although the absorption of QACs through normal skin probably is of less importance than by other routes, studies with excised guinea pig skin have shown that the permeability constants strongly depends on the exposure time and type of skin Sensitisation: Topical mucosal application of QACs may produce sensitisation. Reports on case stories and patch test have shown that compounds such as benzalkonium chloride, cetalkonium chloride and cetrimide may possibly act as sensitisers. However, in general it is suggested that QACs have a low potential for sensitising man It is difficult to distinguish between an allergic and an irritative skin reaction due to the inherent skin irritating effect of QACs. #### Long term/repeated exposure: Inhalation: A group of 196 farmers (with or without respiratory symptoms) were evaluated for the relationship between exposure to QACs (unspecified, exposure levels not given) and respiratory disorders by testing for lung function and bronchial responsiveness to histamine. After histamine provocation statistically significant associations were found between the prevalence of mild bronchial responsiveness (including asthma-like symptoms) and the use of QACs as disinfectant. The association seems even stronger in people without respiratory symptoms. Genetic toxicity: QACs have been investigated for mutagenicity in microbial test systems. In Ames tests using Salmonella typhimurium with and without metabolic activation no signs of mutagenicity has been observed. Negative results were also obtained in E. coli reversion and B. subtilis rec assays. However, for benzalkonium chloride also positive and equivocal results were seen in the B. subtilis rec assays. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. Most undiluted cationic surfactants satisfy the criteria for classification as Harmful (Xn) with R22 and as Irritant (Xi) for skin and eyes with R38 and R41. No significant acute toxicological data identified in literature search. # **Section 12 - ECOLOGICAL INFORMATION** Toxic to aquatic organisms. This material and its container must be disposed of as hazardous waste. # **Section 13 - DISPOSAL CONSIDERATIONS** #### **US EPA Waste Number & Descriptions** A. General Product Information Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C) #### **Disposal Instructions** All waste must be handled in accordance with local, state and federal regulations. ! Puncture containers to prevent re-use and bury at an authorized landfill. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - · Reuse - Recycling - · Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal. - · Recycle wherever possible. - · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified. # **Section 14 - TRANSPORTATION INFORMATION** DOT: Symbols: None Hazard class or Division: 8 Identification Numbers: UN3263 PG: II Label Codes: 8 Special provisions: IB8, IP2, IP4, T3, TP33 Packaging: Exceptions: 154 Packaging: Non- bulk: 212 Packaging: Exceptions: 154 Quantity limitations: 15 kg Passenger aircraft/rail: Quantity Limitations: Cargo 50 kg Vessel stowage: Location: B aircraft only: Vessel stowage: Other: 52 Hazardous materials descriptions and proper shipping names: Corrosive solid, basic, organic, n.o.s. **Air Transport IATA:** ICAO/IATA Class: 8 ICAO/IATA Subrisk: None UN/ID Number: 3263 Packing Group: II Special provisions: A3 Cargo Only Packing Instructions: 816 Maximum Qty/Pack: 50 kg Passenger and Cargo Passenger and Cargo Packing Instructions: 814 Maximum Qty/Pack: 15 kg Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity Packing Instructions: Y814 Maximum Qty/Pack: 5 kg Shipping Name: CORROSIVE SOLID, BASIC, ORGANIC, N.O.S. *(CONTAINS MALONDIALDEHYDE TETRABUTYLAMMONIUM SALT) **Maritime Transport IMDG:** IMDG Class: 8 IMDG Subrisk: None UN Number: 3263 Packing Group: II EMS Number: F-A , S-B Special provisions: 274 Limited Quantities: 1 kg # **Section 15 - REGULATORY INFORMATION** malondialdehyde tetrabutylammonium salt (CAS: 100683-54-3) is found on the following regulatory lists; "Canada - Prince Edward Island Occupational Exposure Limits", "Canada National Pollutant Release Inventory (NPRI)", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - Michigan Exposure Limits for Air Contaminants", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants" # **Section 16 - OTHER INFORMATION** Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL. - Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references. - The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. Issue Date: Apr-11-2009 Print Date: Jan-28-2011