Octadecylamine

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Octadecylamine

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY: ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C18-H39-N, CH3(CH2)16CH2NH2, "stearyl amine", stearylamine, n-octadecylamine, "Adogenen 142", "Alamine 7"

CHEMWATCH HAZARD RATINGS Min Max Flammability: 1 Toxicity: 2 Min/Nil=0 Body Contact: 3 Low=1 Reactivity: Moderate=2 1 High=3 Chronic: 2 Extreme=4

Section 2 - HAZARDS IDENTIFICATION

EMERGENCY OVERVIEW

RISK

Risk of serious damage to eyes. May cause SENSITIZATION by skin contact. Irritating to respiratory system and skin. Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

Accidental ingestion of the material may be damaging to the health of the individual.

• Amines without benzene rings when swallowed are absorbed throughout the gut. Corrosive action may cause damage throughout the gastrointestinal tract. They are removed through the liver, kidney and intestinal mucosa by enzyme breakdown.

EYE

■ If applied to the eyes, this material causes severe eye damage.

SKIN

• The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.

Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.

• Open cuts, abraded or irritated skin should not be exposed to this material.

Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction.

• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Volatile amine vapors produce irritation and inflammation of the skin. Direct contact can cause burns. They may be absorbed through the skin and cause similar effects to swallowing, leading to death. The skin may exhibit whiteness, redness and wheals.

INHALED

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Inhalation of vapors, aerosols (mists, fumes) or dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

■ Inhalation of amine vapors may cause irritation of the mucous membrane of the nose and throat, and lung irritation with respiratory distress and cough. Swelling and inflammation of the respiratory tract is seen in serious cases; with headache, nausea, faintness and anxiety There may also be wheezing.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Skin contact with the material is more likely to cause a sensitization reaction in some persons compared to the general population.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

	Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS		
NAME		CAS RN	%
octadecylamine		124-30-1	> 99

Section 4 - FIRST AID MEASURES

SWALLOWED

· If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. · Observe the patient carefully. · Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. · Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. · Seek medical advice.

EYE

■ If this product comes in contact with the eyes: · Immediately hold eyelids apart and flush the eye continuously with running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. · Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes. · Transport to hospital or doctor without delay. · Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available). · Seek medical attention in event of irritation.

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested. · Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. · Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. · Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

■ For acute or short-term repeated exposures to highly alkaline materials:

- · Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.
- · Oxygen is given as indicated.
- · The presence of shock suggests perforation and mandates an intravenous line and fluid administration.

• Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilization of proteins allow deep penetration into the tissue.

Alkalis continue to cause damage after exposure.

INGESTION:

· Milk and water are the preferred diluents

- No more than 2 glasses of water should be given to an adult.
- · Neutralizing agents should never be given since exothermic heat reaction may compound injury.
- * Catharsis and emesis are absolutely contra-indicated.
- * Activated charcoal does not absorb alkali.
- * Gastric lavage should not be used.
- Supportive care involves the following:
- Withhold oral feedings initially.
- · If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- · Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- · Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).
- SKIN AND EYE:
- · Injury should be irrigated for 20-30 minutes.
- · Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology].

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	< 0.1 @ 20 C
Upper Explosive Limit (%):	Not applicable
Specific Gravity (water=1):	0.79
Lower Explosive Limit (%):	Not applicable

EXTINGUISHING MEDIA

- · Foam.
- Dry chemical powder.
- · BCF (where regulations permit).
- · Carbon dioxide.
- · Water spray or fog Large fires only.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- · Prevent, by any means available, spillage from entering drains or water course.
- · Use water delivered as a fine spray to control fire and cool adjacent area.
- · DO NOT approach containers suspected to be hot.
- · Cool fire exposed containers with water spray from a protected location.
- · If safe to do so, remove containers from path of fire.
- · Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- · Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- · Build-up of electrostatic charge may be prevented by bonding and grounding.

• Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: Respirator:

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- · Control personal contact by using protective equipment.
- · Use dry clean up procedures and avoid generating dust.
- · Place in a suitable, labelled container for waste disposal.

Environmental hazard - contain spillage.

MAJOR SPILLS

Environmental hazard - contain spillage.

Moderate hazard.

- · CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.
- · Control personal contact by wearing protective clothing.
- · Prevent, by any means available, spillage from entering drains or water courses.
- · Recover product wherever possible.
- · IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- · If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

PROTECTIVE ACTION ZONE

From IERG (Canada/Australia) Isolation Distance -Downwind Protection Distance 10 meters

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide 171 is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.
- · Use in a well-ventilated area.
- · Prevent concentration in hollows and sumps.
- · DO NOT enter confined spaces until atmosphere has been checked.
- · DO NOT allow material to contact humans, exposed food or food utensils.
- · Avoid contact with incompatible materials.
- · When handling, DO NOT eat, drink or smoke.
- · Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.

· Always wash hands with soap and water after handling.

· Work clothes should be laundered separately.

· Launder contaminated clothing before re-use.

· Use good occupational work practice.

· Observe manufacturer's storing and handling recommendations.

• Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

· Do NOT cut, drill, grind or weld such containers.

· In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

· Polyethylene or polypropylene container.

· Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

■ DO NOT store near acids, or oxidizing agents.

Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA mg/m ³	Notes
US - Oregon Permissible Exposure Limits (Z-3)	octadecylamine (Inert or Nuisance Dust: Total dust)	10	(d)
US OSHA Permissible Exposure Levels (PELs) - Table Z3	octadecylamine (Inert or Nuisance Dust: (d) Respirable fraction)	5	
US OSHA Permissible Exposure Levels (PELs) - Table Z3	octadecylamine (Inert or Nuisance Dust: (d) Total dust)	15	
US - Hawaii Air Contaminant Limits	octadecylamine (Particulates not other wise regulated - Total dust)	10	
US - Hawaii Air Contaminant Limits	octadecylamine (Particulates not other wise regulated - Respirable fraction)	5	
US - Oregon Permissible Exposure Limits (Z-3)	octadecylamine (Inert or Nuisance Dust: Respirable fraction)	5	(d)
US ACGIH Threshold Limit Values (TLV)	octadecylamine (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book
US - California Permissible Exposure Limits for Chemical Contaminants	octadecylamine (Particulates not otherwise regulated Respirable fraction)	5	(n)
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	octadecylamine (Particulates not otherwise regulated Respirable fraction)	5	
US - Michigan Exposure Limits for Air Contaminants	octadecylamine (Particulates not otherwise regulated, Respirable dust)	5	
Canada - Prince Edward Island Occupational Exposure Limits	octadecylamine (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	octadecylamine (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5	

MATERIAL DATA

OCTADECYLAMINE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- · cause inflammation
- · cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- \cdot permit greater absorption of hazardous substances and
- · acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- · Safety glasses with side shields.
- · Chemical goggles.
- · Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

• When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.

· When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.

 \cdot Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- nitrile rubber
- · butvl rubber
- · fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · Overalls.
- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

RESPIRATOR

- · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- . The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure

measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).

• Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.

· Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.

· Use approved positive flow mask if significant quantities of dust becomes airborne.

· Try to avoid creating dust conditions.

RESPIRATOR

-

-			
Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional

judgement. In conditions where no reasonable estimate of exposure can be

made, assume the exposure is in a concentration IDLH and use NIOSH-certified

full face pressure demand SCBA with a minimum service life of 30 minutes, or

a combination full facepiece pressure demand SAR with auxiliary self-contained

air supply. Respirators provided only for escape from IDLH atmospheres shall be

NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

· Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.

· Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

· If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:

(a): particle dust respirators, if necessary, combined with an absorption cartridge;

(b): filter respirators with absorption cartridge or canister of the right type;

(c): fresh-air hoods or masks

· Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.

• Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be

a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Does not mix with water. Floats on water. Alkaline.			
State	Divided solid	Molecular Weight	269.58
Melting Range (°F)	122- 140	Viscosity	Not Applicable
Boiling Range (°F)	>572	Solubility in water (g/L)	Immiscible
Flash Point (°F)	>302 (COC)	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available.	Vapour Pressure (mmHG)	< 0.1 @ 20 C
Upper Explosive Limit (%)	Not applicable	Specific Gravity (water=1)	0.79
Lower Explosive Limit (%)	Not applicable	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	< 1 (water)	Evaporation Rate	Not applicable

APPEARANCE

Off-white to yellow solid/flake with an ammoniacal odour; does not mix with water.

Consistent with the size and nature of these molecules, measured and modeled vapor pressures are very low, and the FND ether amines are considered to be essentially nonvolatile. Measurement and prediction of physical/chemical properties for surfactants are complicated by their behavior in test systems and the environment, and the log Kow is not an appropriate hydrophobicity parameter for reliably predicting environmental behavior .Prediction of physical/chemical properties, including strong adsorption and absorption properties (log Koc) and surface tension activity is unreliable for the same reasons.

Material

Value

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.
- · Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid strong acids.

· Avoid contact with copper, aluminium and their alloys. Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

OCTADECYLAMINE

TOXICITY AND IRRITATION

OCTADECYLAMINE:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Skin (rabbit): 20 mg/24h Moderate

Eye (rabbit): SEVERE

• Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's edema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitization potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitizing substance which is widely distributed can be a more important allergen than one with stronger sensitizing potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating

compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

For Fatty Nitrogen-Derived ether amines and Fatty Nitrogen-derived amines (FND ether amines and FND amines):

FND ether amines and FND amines are very similar in structure and function. The minimal difference among the alkyl substituents and the large database for the FND categories indicates that the structural differences in these large alkyl chains do not result in differences in toxicity or mutagenicity.

The differences in chain length, degree of saturation of the carbon chains, source of the natural oils, or addition of an amino group in the chain would not be expected to have an impact on the toxicity profile. This conclusion is supported by a number of studies in the FND family of chemicals (amines, cationics, and amides as separate categories) that show no differences in the length or degree of saturation of the alkyl substituents and is also supported by the limited toxicity of these long-chain substituted chemicals

The available acute oral LD50 study for the propanamine derivative with the extensive data for the other supporting chemicals provides adequate evidence that the FND ether amines are only moderately to slightly toxic via this route and exposure period. Acute dermal studies for the supporting chemicals indicate these chemicals can be classified as minimally toxic. Acute inhalation studies did not result in deaths under normal exposure conditions for two chemicals. Repeated dose toxicity studies had similar NOAELs (12.5 to 50 mg/kg/day for rats and 3 or 13 mg/kg/day for dogs). Importantly because the highest exposure potential for some of the FND ether amines is via skin contact, a number of repeat dose dermal studies indicate the chemicals are highly irritating.

No clear organ-specific toxicity occurred in any of the repeat dose studies with the supporting chemicals in the FND ether amines category. In addition, available data indicate that the FND ether amines are unlikely to be mutagenic and that they are not reproductive or developmental toxins

In evaluating potential toxicity of the FND Amines chemicals, it is also useful to review the available data for the related FND Cationic and FND Amides Category chemicals. Acute oral toxicity studies (approximately 80 studies for 40 chemicals in the three categories) provide LD50 values from approximately 400 to 10,000 mg/kg with no apparent organ specific toxicity. Similarly, repeated dose toxicity studies (approximately 35 studies for 15 chemicals) provide NOAELs between 10 and 100 mg/kg/day for rats and slightly lower for dogs. More than 60 genetic toxicity studies (in vitro bacterial and mammalian cells as well as in vivo studies) indicated no mutagenic activity among more than 30 chemicals tested. For reproductive evaluations, 14 studies evaluated reproductive endpoints and/or reproductive organs for 11 chemicals, and 15 studies evaluated developmental toxicity for 13 chemicals indicating no reproductive or developmental effects for the FND group as a whole.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

OCTADECYLAMINE:

Marine Pollutant: Yes

■ Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

• Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

■ For Fatty Nitrogen-derived ether amines and Fatty Nitrogen-Derived amines (FND ether amines and FND amines):

Environmental fate:

Consistent with the size and nature of these molecules, measured and modeled vapor pressures are very low, and the FND ether amines are considered to be essentially nonvolatile. Measurement and prediction of physical/chemical properties for surfactants are complicated by their behavior in test systems and the environment, and the log Kow is not an appropriate hydrophobicity parameter for reliably predicting environmental behavior .Prediction of physical/chemical properties, including strong adsorption and absorption properties (log Koc) and surface tension activity is unreliable for the same reasons.

Water solubility estimates varied from slightly soluble to very insoluble.

Fugacity models predict virtually no occurrence of the FND ether amines in air, which is consistent with the very low vapor pressures. Nonetheless, modeling indicates that they would be expected to degrade relatively rapidly upon exposure to light (t1/2 values ranging from approximately 1.0 to 2.8 hours).

Distribution to air and soil were < 1% for all of the chemicals that could be modeled while distribution to the water compartment varied from 5 to 90% with the remainder in the sediment.

Overall, FND ether amines have been shown to be either readily biodegradable or to attain degradation close to meeting the "readily biodegradable" criteria.

Ecotoxicity:

A number of studies evaluating the toxicity of the structurally related chemicals, to fish, have been reported. Three assays for one such chemical indicated substantial differences in the measured toxicity ranging from 23 to > 1000 mg/L. Again, this range shows the complexity of testing these types of chemicals.

It is likely that the range of values represents bioavailability or physical availability (important because many surfactant-like chemicals are known to kill aquatic organisms via a physical rather than chemical mechanism) of the test chemical to the fish. Except where bioavailability questions arose, reported LC50 values rang from 0.11 to 9.3 mg/L. These findings are consistent with the FND surfactants (cationics, amides, nitriles, ether nitriles) in general and support the conclusion that the FND chemicals are toxic to fish when bioavailable, presumably due to their surfactant properties.

Similar to the fish testing, a series of studies evaluating toxicity to aquatic invertebrates is available for structurally related chemicals with EC50 values ranging between 0.011 and 21 mg/L, except where bioavailability questions arose. Acute toxicity to daphnia was confounded by

solubility problems and yielded higher than expected EC50 values In addition, a study examining a mixture of an FND active ingredient with inert materials (e.g. as used in soap) and using two water sources, indicated that river water reduced the toxicity compared to well water (EC50 = 60 vs 22 mg/L, respectively) and that the inert ingredients tended to reduce toxicity (EC50 = 6.5 mg/L for the 83.5% material vs 22 mg/L for the 63% material).

Toxicity to aquatic plants for structurally related chemicals indicates that these amine surfactants are highly toxic to algae (EbC50 and ErC50 values ranging from 0.00075 to 0.17 mg/L).

DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
octadecylamine	LOW		LOW	LOW

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- · Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

· Recycle wherever possible.

· Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT Symbols: G Hazard class or Division: 9 Identification Numbers: UN3077 PG: III Label Codes: 9 Special provisions: 8, 146, 335, B54, IB8, IP3, N20. T1. TP33 Packaging: Exceptions: 155 Packaging: Non- bulk: 213 Packaging: Exceptions: 155 Quantity limitations: No limit Passenger aircraft/rail: Quantity Limitations: Cargo No limit Vessel stowage: Location: A aircraft only: Vessel stowage: Other: None Hazardous materials descriptions and proper shipping names: Environmentally hazardous substance, solid, n.o.s Air Transport IATA: ICAO/IATA Class: 9 ICAO/IATA Subrisk: None UN/ID Number: 3077 Packing Group: III Special provisions: A97 Cargo Only Packing Instructions: 911 Maximum Qty/Pack: 400 kg Passenger and Cargo Passenger and Cargo Packing Instructions: 911 Maximum Qty/Pack: 400 kg Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity Packing Instructions: Y911 Maximum Qty/Pack: 30 kg G Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID,

N.O.S. *(CONTAINS OCTADECYLAMINE) **Maritime Transport IMDG:** IMDG Class: 9 IMDG Subrisk: None UN Number: 3077 Packing Group: III EMS Number: F-A , S-F Special provisions: 179 274 335 909 Limited Quantities: 5 kg Marine Pollutant: Yes Shipping Name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.(contains octadecylamine)

Section 15 - REGULATORY INFORMATION

REGULATIONS

octadecylamine (CAS: 124-30-1) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "Canada Ingredient Disclosure List (SOR/88-64)", "Canada Toxicological Index Service -Workplace Hazardous Materials Information System - WHMIS (English)", "International Council of Chemical Associations (ICCA) - High Production Volume List", "OECD Representative List of High Production Volume (HPV) Chemicals", "US EPA High Production Volume Program Chemical List", "US Food Additive Database", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation and/or ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- * (limited evidence).

ND

Substance CAS Suggested codes octadecylamine 124- 30- 1

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Aug-24-2009 Print Date:Oct-5-2010