Pivalic acid

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Pivalic acid

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

SUPPLIER

Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

• Intermediate.

SYNONYMS

C5-H10-O2, (CH3)3CCO2H, "acetic acid, trimethyl-", "2, 2-dimethylpropanoic acid", "2, 2-dimethylpropanoic acid", "alpha, alphadimethylpropionic acid", "2, 2-dimethylpropionic acid", "2, 2-dimethylpropionic acid", "neopentanoic acid", "tert-pentanoic acid", "propanoic acid", "propionic acid, 2, 2-dimethyl-", "propionic acid, 2, 2-dimethyl-", "trimethylacetic acid"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK Causes burns. Risk of serious damage to eyes. Harmful in contact with skin and if swallowed.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

• Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

• The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.

• Ingestion of low-molecular organic acid solutions may produce spontaneous hemorrhaging, production of blood clots, gastrointestinal damage and narrowing of the esophagus and stomach entry.

• Ingestion of acidic corrosives may produce burns around and in the mouth. the throat and esophagus. Immediate pain and difficulties in swallowing and speaking may also be evident. Swelling of the epiglottis may make it difficult to breathe which may result in suffocation. More severe exposure may result in vomiting blood and thick mucus, shock, abnormally low blood pressure, fluctuating pulse, shallow respiration and clammy skin, inflammation of stomach wall, and rupture of esophageal tissue. Untreated shock may eventually result in kidney failure. Severe cases may result in perforation of the stomach and abdominal cavity with consequent infection, rigidity and fever. There may be severe narrowing of the esophageal or pyloric sphincters; this may occur immediately or after a delay of weeks to years. There may be coma and convulsions, followed by death due to infection of the abdominal cavity, kidneys or lungs.

EYE

• The material can produce chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.

- · If applied to the eyes, this material causes severe eye damage.
- Solutions of low-molecular weight organic acids cause pain and injuryto the eyes.

• Direct eye contact with acid corrosives may produce pain, tears, sensitivity to light and burns. Mild burns of the epithelia generally recover rapidly and completely. Severe burns produce long-lasting and possibly irreversible damage. The appearance of the burn may not be apparent for several weeks after the initial contact. The cornea may ultimately become deeply opaque resulting in blindness.

SKIN

• Skin contact with the material may be harmful; systemic effects may resultfollowing absorption.

- The material can produce chemical burns following direct contact with the skin.
- · Open cuts, abraded or irritated skin should not be exposed to this material.

• Skin contact with acidic corrosives may result in pain and burns; these may be deep with distinct edges and may heal slowly with the formation of scar tissue.

• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

• If inhaled, this material can irritate the throat andlungs of some persons.

• Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

• Corrosive acids can cause irritation of the respiratory tract, with coughing, choking and mucous membrane damage. There may be dizziness, headache, nausea and weakness. Swelling of the lungs can occur, either immediately or after a delay; symptoms of this include chest tightness, shortness of breath, frothy phlegm and cyanosis. Lack of oxygen can cause death hours after onset.

• Inhalation of vapors or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.

• Inhalation of quantities of liquid mist may be extremely hazardous, even lethal due to spasm, extreme irritation of larynx and bronchi, chemical pneumonitis and pulmonary edema.

CHRONIC HEALTH EFFECTS

• Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Repeated or prolonged exposure to acids may result in the erosion of teeth, swelling and or ulceration of mouth lining. Irritation of airways to lung, with cough, and inflammation of lung tissue often occurs. Chronic exposure may inflame the skin or conjunctiva.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS **HAZARD RATINGS** Min Max Flammability: 1 2 Toxicity: Min/Nil=0 Body Contact: 3 Low=1 Moderate=2 Reactivity: 1 High=3 2 Chronic: Extreme=4 NAME CAS RN % pivalic acid 75-98-9 >98

Section 4 - FIRST AID MEASURES

SWALLOWED

- •
- For advice, contact a Poisons Information Center or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Transport to hospital or doctor without delay.

EYE

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

• If skin or hair contact occurs:

- Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.
- Transport to hospital, or doctor.

INHALED

- •
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g. lung edema, fluid in the lungs). As this reaction may be delayed up to 24 hours after exposure, affected individuals need complete rest (preferably in semi-recumbent posture) and must be kept under medical observation even if no symptoms are (yet) manifested. Before any such manifestation, the administration of a spray containing a dexamethasone derivative or beclomethasone derivative may be considered. This must definitely be left to a doctor or person authorized by him/her. (ICSC13719).

NOTES TO PHYSICIAN

- · For acute or short term repeated exposures to strong acids:
- Airway problems may arise from laryngeal edema and inhalation exposure. Treat with 100% oxygen initially.
- Respiratory distress may require cricothyroidotomy if endotracheal intubation is contraindicated by excessive swelling
- Intravenous lines should be established immediately in all cases where there is evidence of circulatory compromise.
- Strong acids produce a coagulation necrosis characterized by formation of a coagulum (eschar) as a result of the dessicating action of the acid on proteins in specific tissues.

INGESTION:

- Immediate dilution (milk or water) within 30 minutes post ingestion is recommended.
- DO NOT attempt to neutralize the acid since exothermic reaction may extend the corrosive injury.
- · Be careful to avoid further vomit since re-exposure of the mucosa to the acid is harmful. Limit fluids to one or two glasses in an adult.
- Charcoal has no place in acid management.
- Some authors suggest the use of lavage within 1 hour of ingestion.

SKIN:

- Skin lesions require copious saline irrigation. Treat chemical burns as thermal burns with non-adherent gauze and wrapping.
- Deep second-degree burns may benefit from topical silver sulfadiazine.

EYE:

- Eye injuries require retraction of the eyelids to ensure thorough irrigation of the conjuctival cul-de-sacs. Irrigation should last at least 20-30 minutes. DO NOT use neutralizing agents or any other additives. Several liters of saline are required.
- Cycloplegic drops, (1% cyclopentolate for short-term use or 5% homatropine for longer term use) antibiotic drops, vasoconstrictive agents or artificial tears may be indicated dependent on the severity of the injury.
- Steroid eye drops should only be administered with the approval of a consulting ophthalmologist).

[Ellenhorn and Barceloux: Medical Toxicology].

	Section 5 - FIRE FIGHTING MEASURES	
Vapor Pressure (mmHg):	9.751 @ 60 C	
Upper Explosive Limit (%):	Not available.	

Specific Gravity (water=1):

Lower Explosive Limit (%):

Not available

0.889

EXTINGUISHING MEDIA

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).

Carbon dioxide.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

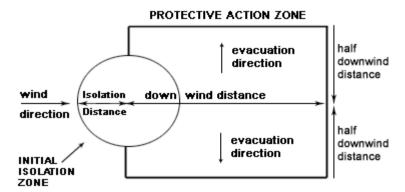
GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible.
- Slight fire hazard when exposed to heat or flame.
- Acids may react with metals to produce hydrogen, a highly flammable and explosive gas.
- Heating may cause expansion or decomposition leading to violent rupture of rigid containers.
- May emit acrid smoke and corrosive fumes.
- Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

FIRE INCOMPATIBILITY

• Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION


Glasses: Chemical goggles. Full face- shield. Gloves: Respirator: Particulate dust filter. Acid vapor Type B cartridge/ canister.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- •
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- · Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.
- Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- Check regularly for spills and leaks.
- MAJOR SPILLS
- •
- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labeled containers for recycling.
- Neutralize/decontaminate residue.
- Collect solid residues and seal in labeled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia) Isolation Distance 25 meters

Downwind Protection Distance 250 meters

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide 154 is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could

experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- •
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid contact with moisture.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

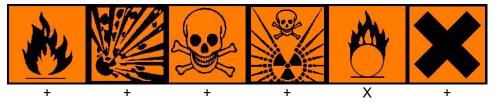
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

• DO NOT use aluminum or galvanized containers.

- Check regularly for spills and leaks.
- Lined metal can, Lined metal pail/drum
- Plastic pail
- Polyliner drum
- Packing as recommended by manufacturer.

• Check all containers are clearly labeled and free from leaks.


- For low viscosity materials
- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.):
- Removable head packaging;
- Cans with friction closures and
- low pressure tubes and cartridges may be used.

- Where combination packages are used, and the inner packages are of glass, porcelain or stoneware, there must be sufficient inert cushioning material in contact with inner and outer packages unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS

- •
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z3)	pivalic acid (Inert or Nuisance Dust: (d) Total dust)	P.11	10	ΥΥ'''		ΥΥ	g/III	.,50	*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	pivalic acid (Inert or Nuisance Dust: (d) Respirable fraction)		5						
US OSHA Permissible Exposure Levels (PELs) - Table Z3	pivalic acid (Inert or Nuisance Dust: (d) Total dust)		15						
US - Hawaii Air Contaminant Limits	pivalic acid (Particulates not other wise regulated - Total dust)		10						
US - Hawaii Air Contaminant Limits	pivalic acid (Particulates not other wise regulated - Respirable fraction)		5						
US - Oregon Permissible Exposure Limits (Z3)	pivalic acid (Inert or Nuisance Dust: (d) Respirable fraction)		5						*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	pivalic acid (Particulates not otherwise regulated Respirable fraction)		5						
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	pivalic acid (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)		5						

US - Michigan Exposure Limits for Air Contaminants pivalic acid (Particulates not otherwise regulated, Respirable dust)

MATERIAL DATA

PIVALIC ACID:

• Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

5

- OSHA (USA) concluded that exposure to sensory irritants can:
- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Chemical goggles.
- Full face shield.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET

Wear chemical protective gloves, eg. PVC.

Wear safety footwear or safety gumboots, eg. Rubber.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Polyethylene gloves

OTHER

- •
- Overalls.
- PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower.
- •
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.

- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of

exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such
 protection might consist of:

(a): particle dust respirators, if necessary, combined with an absorption cartridge;

(b): filter respirators with absorption cartridge or canister of the right type;

- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Mixes with water. Corrosive. Acid.			
State	DIVIDED SOLID	Molecular Weight	102.13
Melting Range (°F)	91.4- 95	Viscosity	Not Applicable
Boiling Range (°F)	325.4- 327.2	Solubility in water (g/L)	Miscible
Flash Point (°F)	147.002	pH (1% solution)	Not available
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapor Pressure (mmHg)	9.751 @ 60 C
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	0.889

Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	3.6
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Moist white crystals or clear liquid dependent on ambient temperature.; mixes with water (1:40), alcohol, ether.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

• Contact with alkaline material liberates heat

STORAGE INCOMPATIBILITY

Reacts with mild steel, galvanized steel / zinc producing hydrogen gas which may form an explosive mixture with air.
Segregate from alkalis, oxidizing agents and chemicals readily decomposed by acids, i.e. cyanides, sulfides, carbonates.
Avoid strong bases.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

pivalic acid

TOXICITY AND IRRITATION

• unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY	IRRITATION
Oral (rat) LD50: 900 mg/kg	Nil Reported

Dermal (rat) LD50: 1900 mg/kg

• The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may produce respiratory tract irritation, and result in damage to the lung including reduced lung function.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

The production of neoacid products involves the reaction between a branched olefin with carbon monoxide and water at elevated temperatures and pressures in the presence of an acid catalyst.

The neoacids C5-28 are structurally similar and create a predictable pattern of physiochemical properties, environmental fate and effects and human health effects. Neoacids are trialkylacetic acids in which each hydrogen on the non carboxyl carbon of acetic acid has been replaced by an alkyl group. The structural features of members of the category are as follows:

- A common structure a quaternary carbon with the general structure R3CCOOH,
- An incremental and constant change across the category where R can be a branched alkyl group ranging from CH3 to C6H13 as the main constituent,
- A likelihood of common precursors and breakdown products that can result in structurally similar metabolites (e.g carboxylic acids).

The existing data suggest that products in the Neoacids (C5-C28) Category exhibit relatively low toxicity for human health endpoints and moderate toxicity for the environmental health endpoints.

Due to the stability conferred by the quaternary carbon, neoacids C5-C28 are relatively resistant to biotransformation and do not readily form bioactive metabolites. Enzymatic removal of the alkyl groups at the quaternary carbon would allow for other metabolic processes to occur. These would likely be mitochondrial beta-oxidation or by cytochrome P450 mediated omega and omega-minus-one oxidation (may be followed by beta-oxidation) to produce acetate. However, since Neoacids C5-C28 are not readily metabolised, they would primarily be eliminated in the urine as glucuronic acid conjugates or by dealkylation

Acute toxicity: All of the neoacids C5-C28 have a low order of toxicity to rats via the oral route of exposure The LD50 values for 2,2-dimethylpropanoic acid, and 2,2- dimethyloctanoic acid were 2000 mg/kg. In addition, the LD50 for Carboxylic acid, C6-8 neo was 1860 mg/kg. These results demonstrate that members of the Neoacids C5- C28 Category have a consistent, low order of acute oral toxicity.

The neoacids C5-C28 have a low order of toxicity via the dermal route of exposure The rabbit dermal LD50 for all members of the category was equal to or greater than 3160 mg/kg. This indicates that the members of this category have a consistent pattern of acute toxicity via the dermal route of exposure.

Repeat dose toxicity: The subchronic toxicity of neoacids C5-C28 has been assessed by conducting repeat dermal exposure studies. Dermal exposure is the primary route of exposure for Neoacids C5-C28, particularly in an industrial setting. An evaluation of the repeated dose studies indicates that Neoacids C5-C28 have a low order of subchronic toxicity.

2,2-Dimethylpropanoic acid, in isopropyl alcohol solution, was repeatedly applied to the shaved intact skin of albino rabbits 5 days/week for two weeks (for a total of 10 applications) at doses of 30 or 300 mg/kg/day. Slight to moderate irritation at the low dose and moderate to marked irritation at the high dose was observed. Slight or moderate erythema, atonia, and desquamation were seen at the low dose. At the high dose, skin irritation consisted of moderate erythema, slight to marked edema, moderate or marked atonia and desquamation. Some dermal necrosis at the site of application was seen in three rabbits and persisted throughout the study. Control animals that received only the solvent (isopropyl alcohol) showed slight irritation. There were no signs of systemic toxicity attributable to dermal absorption of 2,2-dimethylpropanoic acid. The NOAEL for systemic toxicity in this study was 300 mg/kg.

In a similar study, carboxylic acid, C6-8 neo was applied at 55.4 mg/kg and 553.7 mg/kg for 10 applications. No treatment related effects were observed on behavior of clinical signs during the in-life phase of the study. Gross pathology of the animals in all dose groups did not reveal any abnormalities Repeated application of carboxylic acid C6-8 neo did produce marked skin irritation with some dermal necrosis at the site of application in the high dose group. Since no systemic effects were observed in this study, the NOAEL for systemic effects following subchronic dermal application of carboxylic acid, C6-8 neo was 553.7 mg/kg.

Repeated dermal application (400 or 2800 mg/kg daily for a total of 10 applications) of undiluted 2,2-dimethyloctanoic acid generally produced irritation at the low dose and fissuring at the high dose. Slight to moderate erythema, atonia and desquamation were seen at the low dose. At the high dose, skin irritation consisted of moderate erythema, moderate to severe atonia, and desquamation with fissuring. No signs of systemic toxicity were attributed to 2,2-dimethyloctanoic acid. Therefore, the NOAEL for systemic toxicity following subchronic dermal application of 2,2-dimethyloctanoic acid was 2280 mg/kg.

In summary, Neoacids C5-C28 have a low order of subchronic toxicity. In addition, they display a consistent pattern of subchronic toxicity in that the NOAEL for systemic toxicity increases in a predictable pattern from the low to the high molecular weight end of the category.

Developmental toxicity: The available developmental toxicity data on neoacids indicate that they are not selective developmental toxicants. A developmental toxicity study conducted on Carboxylic acid, C6-8 neo produced a NOAEL of 250 mg/kg for both maternal and fetal effects Carboxylic acid, C6-8 neo was not a selective developmental toxicant in this study. In a 3-generation reproduction study with 2,2-dimethyloctanoic acid, developmental effects were not observed in either the F1 or F2 offspring. This study produced a NOAEL of 1500 ppm (in diet) for the maternal, F1, and F2 generations.

Additional developmental toxicology data are available for isoacids, which are isomers of the neoacids. The isoacids are aliphatic carboxylic acids that have saturated branching structures. Isooctanoic acid was tested for developmental toxicity in female rats at doses of 0, 200, 400, and 800 mg/kg/day during gestation days 6 - 15. At 800 mg/kg/day, maternal toxicity was observed; however, there were no effects at 400 mg/kg/day. There were no biologically significant developmental effects in this study. The no-observable-adverse-effect level (NOAEL) for maternal toxicity was 400 mg/kg/day and for developmental toxicity was 800 mg/kg/day.

In a one-generation reproductive toxicity range-finding study, rats were exposed to isooctanoic acid at dietary levels of 1000, 5000, 75000, or 10,000 ppm. In the parental generation, there were no treatment-related effects on survival, organ weights, or reproductive function. In the offspring, there were no treatment-related effects on survival, developmental landmarks, or any significant findings in postmortem evaluations. Statistically significant decreases in the mean offspring body weights of males and females were observed at 10,000 ppm. The high dose also resulted in a suppression of body weight gain in the adult females. Thus, the NOAEL for both parental and offspring effects was 7500 ppm.

A one-generation reproduction study was conducted on isononanoic acid . Rats were administered the test material in the diet at doses of 0, 600, 1200, 2500, and 5000 ppm. There were no treatment-related effects observed on mating, fertility, fecundity, or gestation indices or during sperm analysis. Evidence of maternal toxicity included decreased body weights and increased liver weights in the 2500 and 5000 ppm dose groups. In the offspring, reduced survival indices were noted in the 5000 ppm dose group, and reduced body weights were noted in the 2500 and 5000 ppm.

Further support for the evaluation of the potential of neoacids to be developmental toxicants comes from an analysis of the structure activity relationships that affect teratogenicity. A structure-teratogenicity analysis of carboxylic acids concluded that aliphatic acids, which have a dimethyl substitution at the C-2 position, are not developmental toxicants. Furthermore, the structural requirements for carboxylic acid teratogenicity require an alpha hydrogen and a free carboxylic group.

Since the neoacids are defined by their trialkyl substitution at the alpha carbon, there is no alpha hydrogen. In addition, steric hindrance of the carbonyl group by the quaternary center of the alpha carbon inhibits reactions.

In conclusion, the available test data on neoacids and their isomers, as well as the structure-teratogenicity relationship for aliphatic acids, provide sufficient information for a screening-level assessment of the developmental toxicity of neoacids.

Reproductive toxicity: The available data support the conclusion that the neoacids C5-C28 are not selective reproductive toxicants. In a modified three-generation reproduction study, rats were exposed to 100, 500, or 1500 ppm 2,2-dimethyloctanoic acid in the diet (approximately 5, 25 and 75 mg/kg/day,

respectively). No significant effects were observed in survival, appearance, behavior, or reproductive performance of the parents. No adverse effects were demonstrated in offspring on growth, appearance, or behavior. No treatment related effects were observed at gross or microscopic pathology. The NOAEL in this study was greater than 1500 ppm. The data indicate that 2,2-dimethyloctanoic acid is not a reproductive toxicant.

In a one-generation reproductive toxicity range-finding study, rats were exposed to isooctanoic acid at dietary levels of 1000, 5000, 75000, or 10,000 ppm. In the parental generation, there were no treatment-related effects on survival, organ weights, reproductive function, or sperm indices. In the offspring, there were no treatment-related effects on survival, developmental landmarks, or any significant findings in postmortem evaluations. Statistically significant decreases in the mean offspring body weights of males and females were observed at 10,000 ppm. The high dose also resulted in a suppression of body weight gain in the adult females. Thus, the NOAEL for both parental and offspring effects was 7500 ppm.

A one-generation reproduction study was also conducted on isononanoic acid. Rats were administered the test material in the diet at doses of 0, 600, 1200, 2500, and 5000 ppm. There were no treatment-related effects observed on mating, fertility, fecundity, or gestation indices or during sperm analysis. Evidence of maternal

toxicity included decreased body weights and increased liver weights in the 2500 and 5000 ppm dose groups. In the offspring, reduced survival indices were noted in the 5000 ppm dose group, and reduced body weights were noted in the 2500 and 5000 ppm dose groups. The NOAEL for both maternal and offspring effects in this study was 1200 ppm.

In summary, these data prove adequate to support a screening level assessment of the reproductive toxicity of neoacids C5-C28. Furthermore, these data indicate that neoacids C5-C28 have a low order of reproductive toxicity.

Genotoxicity: There are no structural alerts to suggest that neoacids C5-C28 are likely to be genotoxic.

Respiratory and skin tumours recorded.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

PIVALIC ACID:	
• Fish LC50 (96hr.) (mg/l):	375
• BOD5:	0.21
• BOD20:	1.76
• COD:	1.94
— · · · ·	

· Ecotoxicity:

The tolerance of water organisms towards pH margin and variation is diverse. Recommended pH values for test species listed in OECD guidelines are between 6.0 and almost 9. Acute testing with fish showed 96h-LC50 at about pH 3.5.

for neoacids C5-C28

Environmental fate:

Biodegradation data are available for three neoacid products. They show that neoacid products do not have the potential to biodegrade to a great extent within a standard 28-day test duration. Although there is some information on photodegradation and fugacity, a complete data set to adequately characterize the neoacid products does not exist. Chemical equilibrium models are used to calculate fugacity, which describes the potential of a chemical to partition in the environment. These data can only be calculated. Preliminary information for selected component chemicals of products in the neoacids (C5-C28) Category suggests that these products are expected to partition primarily to water and soil. In addition, the majority of the component chemicals in these products have relatively low K,, values, which suggests that they will not tend to partition to suspended organic matter in air and precipitate to aquatic and terrestrial environmental compartments to a significant extent.

The existing biodegradation data for the neoacids products suggest that these products will not degrade rapidly in the environment. Four products have been tested and they exhibited an extent of biodegradation that ranged from approximately 2 to 44% after 28 days incubation. These data were generated using a closed system with

non-acclimated inocula.

The neoacid products are not expected to hydrolyse at a measurable rate

Ecotoxicity:

The neoacid products ranging from 2,2-dimethylpropanoic acid- to fatty acids, C9-13 neo, have been shown to produce an expected increasing level of acute toxicity to freshwater fish and invertebrates. This is based on data from the literature that are used to read across to selected neoacid products in this category. Although there are insufficient data to confirm that a similar pattern of alga toxicity exists, based on the fish and invertebrate data, a similar increasing level of toxicity is expected from the lower to higher carbon numbered products.

Based on the existing data, products in the Neoacids (C5-C28) Category demonstrate a low to moderate degree of aquatic toxicity from the low to high carbon numbered products, respectively.

Fish LC50 (96 h): C5 neoacid 380 mg/l; C6-8 neoacid 630 mg/l; C10 neoacid 37.2 mg/l

Acute experimental fish toxicity tests are reported for Rainbow Trout (Oncorhyncus mykiss) and Goldfish (Carassius auratus). The results show that a C5 neo acid, C7 linear and branched aliphatic acid (used as read across to the C6-8 neoacid), and C10 neo acid products demonstrate that these products have a potential to cause acute fish toxicity (96-hour LC50) in the range of 630 to 37.2 mg/L. The C9-13 neoacid, and the C9-28 neoacid products are not characterised. Comparable toxicity is expected for these two products because the higher molecular weight fatty acid components in the C9-28 neoacid product have extremely low water solubilities and do not have the potential to be in solution at effect causing levels, unlike the lower molecular weight components whose water solubilities are sufficient to cause an effect as demonstrated by the C10 neoacid product.

Daphnia magna EC50 (48 h): C5 neoacid 203 mg/l; C7 neoacid 138 mg/l; C10 neoacid 47.1 mg/l

Acute experimental toxicity studies are reported for the Daphnid (Daphnia magna). The results show that a C5 neoacid, C7 linear and branched aliphatic acid (used as read across to the C6-8 neoacid), and C10 neoacid product have the potential to cause acute toxicity (48 hour EL50 or EC50) in the range of 203 to 47.1 mg/L.

The C9-13 neoacid, and the C9-28 neoacid products are not characterised. Comparable toxicity is expected for these two products because the higher molecular weight fatty acid components in the C9-28 neo acid product have extremely low water solubilities and do not have the potential to be in solution at effect causing levels, unlike the lower molecular weight components whose water solubilities are sufficient to cause an effect as demonstrated by fish and invertebrate toxicity data for the C10 neoacid product. Algae EC50 (96 h): C6-8 neoacid 6.5 mg/l

An acute experimental toxicity value is reported for the freshwater alga (Selenastrum capricornutum) for a C7 linear and branched aliphatic acid product that is used as read across data to the C7 neoacid. This result shows that a C7 acid product has the potential to cause toxicity (72 hour EC50) at a concentration of 6.5 mg/L, based on alga growth rate Although there are no data for the remaining neoacid and neoacid ester products, overall, they are expected to exhibit a range of toxicity that falls above and below the value for the C7 aliphatic acid product.

• Prevent, by any means available, spillage from entering drains or watercourses.

• DO NOT discharge into sewer or waterways.

BOD 5 if unstated: 0.21

COD: 1.94

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
pivalic acid	LOW		LOW	HIGH

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

• Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Treat and neutralize at an approved treatment plant.
- Treatment should involve: Mixing or slurrying in water Neutralization with soda-lime or soda-ash followed by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers with 5% aqueous sodium hydroxide or soda ash, followed by water. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:					
Symbols:	None	Hazard class or Division:	8		
Identification Numbers:	UN3261	PG:	III		
Label Codes:	8	Special provisions:	IB8, IP3, T1, TP33		
Packaging: Exceptions:	154	Packaging: Non-bulk:	213		
Packaging: Exceptions:	154	Quantity limitations: Passenger aircraft/rail:	25 kg		
Quantity Limitations: Cargo aircraft only:	100 kg	Vessel stowage: Location:	A		
Vessel stowage: Other:	None				
Hazardous materials descriptions Corrosive solid, acidic, organic, n. Air Transport IATA:					
ICAO/IATA Class:	8	ICAO/IATA Subrisk:	None		
UN/ID Number:	3261	Packing Group:	III		
Special provisions:	A3				
Shipping Name: CORROSIVE SOLID, ACIDIC, ORGANIC, N.O.S. *(CONTAINS PIVALIC ACID) Maritime Transport IMDG:					
IMDG Class:	8	IMDG Subrisk:	None		
UN Number:	3261	Packing Group:	III		
EMS Number:	F-A,S-B	Special provisions:	223 274 944		
Limited Quantities: Shipping Name: CORROSIVE SC	5 kg ILID, ACIDIC, ORGANIC, N.O.S.(co	ntains pivalic acid)			

Section 15 - REGULATORY INFORMATION

pivalic acid (CAS: 75-98-9) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)","Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)","GESAMP/EHS Composite List - GESAMP Hazard Profiles","IMO IBC Code Chapter 17: Summary of minimum

requirements","IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk","International Council of Chemical Associations (ICCA) - High Production Volume List","OECD Representative List of High Production Volume (HPV) Chemicals","US DOE Temporary Emergency Exposure Limits (TEELs)","US EPA High Production Volume Program Chemical List","US EPA Master Testing List - Index I Chemicals Listed","US EPA Master Testing List - Index II Chemicals Removed","US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation may produce health damage*.
- · Cumulative effects may result following exposure*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

• Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Mar-28-2010 Print Date:Jun-22-2010