

Sulfadiazine sodium salt

2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 **EMERGENCY** ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C10H9N4NaO2S, "sulfanilamide, N(sup 1)-2-pyrimidinyl-, monosodium salt", "benzenesulfonamide, 4-amino-N-2-pyrimidinyl-, monosodium salt", "monosodium 2-sulfanilamidopyrimidine", "pyrimidine, 2-sulfanilamido-, monosodium salt", "N(sup 1)-2-pyrimidinyl-sulfanilamide, monosodium salt", "sodium sulfadiazene", "sodium sulfadiazine", "sodium 2-sulfanilamidopyrimidine", "sodium sulfadiazene", "sodium sulfadiazine", "sodium 2-sulfanilamidopyrimidine", "sodium sulfadiazene", "sodium derivative", "2-sulfanilamidopyrimidine", "sulfanilamido, N(sup 1)-2-pyrimidinyl-, N(sup 1)-sodium derivative", "2-sulfanilaminopyridine sodium salt", "sulfanilamidopyrimidine", "sulfanilami

1 of 12

EMERGENCY OVERVIEW

RISK

Harmful if swallowed. May cause SENSITIZATION by inhalation and skin contact. Possible risk of harm to the unborn child. Irritating to eyes, respiratory system and skin. Toxic to soil organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

• Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

■ Sulfonamides and their derivatives can cause extensive kidney damage, and destroy red blood cells. Overdose may cause an accumulation of acid in the blood or a diminished blood sugar level with confusion and coma resulting. Predisposed persons can develop hypersensitivity reactions, including for topical application. Deaths have occurred due to hypersensitivity, anaemia, imbalances in blood cell distribution and kidney and liver damage. 2-5 grams can be fatal. Sulfonamides cross the placental barrier, are excreted in the breast milk and may produce adverse effects in the foetus/embryo and newborn, including loss of certain white blood cells causing immune function deficiency, anaemia, jaundice and kernicterus.

EYE

This material can cause eye irritation and damage in some persons.

• Eye drops with sulfonamides can cause local irritation, sensations of burning and stinging, blurred vision and loss of depth perception. The conjunctiva and cornea may become inflamed, and the cornea and lens may become clouded.

SKIN

This material can cause inflammation of the skin oncontact in some persons.

- The material may accentuate any pre-existing dermatitis condition.
- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- Open cuts, abraded or irritated skin should not be exposed to this material.

• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

This material is a photosensitizer. Certain individuals working with this substance may show allergic reaction of the skin under sunlight. This results in sensitivity to sunburn (may be severe) unless protective covering and 15+PF sunscreen are used. Responses may vary from sunburn-like effects to swelling and blistering lesions.

INHALED

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

■ Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.

• Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

CHRONIC HEALTH EFFECTS

• Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population.

Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother.

There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

There is some evidence from animal testing that exposure to this material may result in reduced fertility.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Prolonged oral treatment with sulfonamides has caused nausea, vomiting, diarrhoea, abdominal pain, loss of appetite, inflammation of the mouth cavity, impaired folic acid absorption, exacerbation of porphyria, acidosis, liver damage with impaired blood clotting, jaundice and inflammation of the pancreas. Effects on the kidney include blood and crystals in the urine, painful and frequent urination or lack of urine with nitrogen retention. Nervous system symptoms include headache, drowsiness, trouble sleeping, dizziness, ringing in the ears, hearing loss, depression, hallucinations, inco-ordination, paralysis of muscles, numbness in the extremities, spinal cord damage and inflammation, convulsions and unconsciousness. Effects on the blood include a change in blood cell distribution with loss of white blood

cells and platelets, and anaemia, which Africans seem to be more prone to developing than Europeans. Cyanosis can occur owing to complexes being formed by haemoglobin. Eye effects include inflamed cornea and conjunctiva with eyelid swelling and in severe cases, fear of the light. Allergies and cross-sensitivity is common, and can cause itches, wheals and sometimes a severe red rash with blisters that is often fatal. This class of drugs can scar the cornea and conjunctiva, cause swelling around the eyes, painful and inflamed joints, reduced sperm counts, pneumonia, fever, chills, hair loss, inflammation of vessels, lupus, reduced lung function, infertility, hypothyroidism and goitre, and increased urinary output. More seriously, the lungs may become permanently scarred and there may be irreversible damage to the nervous system and muscles. Inflammation of the skin has occurred after the drug is ingested and has travelled through the bloodstream. Skin effects often occur when there has been exposure in conjunction with UV light. Clothed areas are initially less likely to be affected but may be in later stages. Rarely there may be persistence of inflammation on light contact even after the drug has been removed.

Renal complications such as lumbar pain, dysuria, haematuria, oliguria and anuria may occur after intravenous administration. A severe form of Stevens-Johnson syndrome, associated with wide-spread lesions of the skin and mucous membrane, and which may be fatal in about 25% of cases has occurred in patients after treatment with sulfadiazine.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS					
NAME	CAS RN	%			
sulfadiazine sodium	547-32-0	>98			

Section 4 - FIRST AID MEASURES

SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- For advice, contact a Poisons Information Centre or a doctor.
- Urgent hospital treatment is likely to be needed.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise

• INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE Wear a protective glove when inducing vomiting by mechanical means.

EYE

- If this product comes in contact with the eyes
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin contact occurs

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

In cases of recent sulfonamide overdose the stomach should be emptied by aspiration and lavage. If kidney function is adequate, a saline purgative, such as sodium sulfate, 30 g in 250 ml water, may be given to promote peristalsis and elimination of sulfonamide in the urine may be assisted by giving alkalies, such as sodium bicarbonate and increasing fluid intake. Severe crystalluria may require ureteric catheterisation and irrigation with warm 2.5% sodium bicarbonate solution. Treatment should be continued until it can be assumed that the sulfonamide has been eliminated. The majority of sulfonamides are metabolised to acetylated derivatives which retain the toxicity of the parent compound and thus may indicate more active removal when adverse effects are very severe. Active measures may include forced diaresis, peritoneal dialysis and charcoal haemoperfusion.

[Martindale The Extra Pharmacopoeia, 28th Ed.].

Sulfadiazine is readily absorbed from the gastro-intestinal tract with about 55% being bound to blood plasma albumins. Up to 15% is present as the acetyl derivative. Because of the low solubilities of the substance and its acetyl derivative in urine, crystallisation is a common problem in the bladder. 50% of a single dose oral dose is eliminated in 24 hours

Section 5 - FIRE FIGHTING MEASURES

Vapor Pressure (mmHG)	Not applicable.
Upper Explosive Limit (%)	Not available.
Specific Gravity (water=1)	Not available.
Lower Explosive Limit (%)	Not available.

EXTINGUISHING MEDIA

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

When any large container (including road and rail tankers) is involved in a fire,

consider evacuation by 800 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited - particles exceeding this limit will generally not form flammable dust clouds.; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- In the same way as gases and vapors, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL).are applicable to dust clouds but only the LEL is of practical use; this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC)
- A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
- Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- All movable parts coming in contact with this material should have a speed of less than 1-meter/sec
- A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or pressure, may result in ignition especially in the absence of an apparent ignition source
- One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapors).
- Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases.

Combustion products include carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

Environmental hazard - contain spillage.

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Environmental hazard contain spillage.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- · Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.

• Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Lined metal can, lined metal pail/ can.
- Plastic pail.
- Polyliner drum.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

For low viscosity materials

- Drums and jerricans must be of the non-removable head type.
- Where a can is to be used as an inner package, the can must have a screwed enclosure.
- For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.)
- Removable head packaging;
- Cans with friction closures and
- low pressure tubes and cartridges

may be used.

Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact

with inner and outer packages *.

In addition, where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *.

* unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material		TWA mg/m³	STEL mg/m³	Peak mg/m³	TWA F/CC	Notes
Canada - Ontario Occupational Exposure Limits	sulfadiazine sodium (Particles (Insoluble or Poorly Soluble) Not Otherwise)		10 (I)				
Canada - British Columbia Occupational Exposure Limits	sulfadiazine sodium (Particles (Insoluble or Poorly Soluble) Not Otherwise Classified (PNOC))		10 (N)				
Canada - Ontario Occupational Exposure Limits	sulfadiazine sodium (Specified (PNOS) / Particules (insolubles ou peu solubles) non précisées par ailleurs)		3 (R)				
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	sulfadiazine sodium (Particulates not otherwise regulated Respirable fraction)		5				
US - California Permissible Exposure Limits for Chemical Contaminants	sulfadiazine sodium (Particulates not otherwise regulated Respirable fraction)		5				(n)
US - Oregon Permissible Exposure Limits	sulfadiazine sodium (Particulates not	-	10				Bold print identifies substances for which the Oregon

(Z-1)	otherwise regulated (PNOR) (f) Total Dust)		Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."
US - Michigan Exposure Limits for Air Contaminants	sulfadiazine sodium (Particulates not otherwise regulated, Respirable dust)	5	
US - Oregon Permissible Exposure Limits (Z-1)	sulfadiazine sodium (Particulates not otherwise - regulated (PNOR) (f) Respirable Fraction)	5	Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	sulfadiazine sodium (Particulates not otherwise regulated (PNOR)(f)- Respirable	5	

PERSONAL PROTECTION

fraction)

RESPIRATOR

Particulate. (AS/NZS 1716 & 1715, EN 1432000 & 1492001, ANSI Z88 or national equivalent)

EYE

- For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs
- Chemical goggles
- Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET

NOTE

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include
- frequency and duration of contact,
- chemical resistance of glove material,

- glove thickness and
- dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex, latex/ nitrile). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Change gloves frequently and when contaminated, punctured or torn.
- Wash hands immediately after removing gloves.
- Protective shoe covers. [AS/NZS 2210]
- Head covering.

OTHER

- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies Vinyl suit

ENGINEERING CONTROLS

Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

When handling quantities up to 500 gram in either a standard laboratory with general dilution ventilation (e.g. 6-12 air changes per hour) is preferred. Quantities up to 1 kilogram may require a designated laboratory using fume hood, biological safety cabinet, or approved vented enclosures. Quantities exceeding 1 kilogram should be handled in a designated laboratory or containment laboratory using appropriate barrier/ containment technology.

Manufacturing and pilot plant operations require barrier/ containment and direct coupling technologies.

Barrier/ containment technology and direct coupling (totally enclosed processes that create a barrier between the equipment and the room) typically use double or split butterfly valves and hybrid unidirectional airflow/ local exhaust ventilation solutions (e.g. powder containment booths). Glove bags, isolator glove box systems are optional. HEPA filtration of exhaust from dry product handling areas is required.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Air Speed
0.25-0.5 m/s (50-100 f/min.)
0.5-1 m/s (100-200 f/min.)
1-2.5 m/s (200-500 f/min.)
Upper end of the range
1 Disturbing room air currents
. 2 Contaminants of high toxicity
3 High production, heavy use
4 Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other

mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

The following protective devices are recommended where exposures exceed the recommended exposure control guidelines by factors of 10; high efficiency particulate (HEPA) filters or cartridges

10-25; loose-fitting (Tyvek or helmet type) HEPA powered-air purifying respirator.

25-50; a full face-piece negative pressure respirator with HEPA filters

50-100; tight-fitting, full face-piece HEPA PAPR

100-1000; a hood-shroud HEPA PAPR or full face-piece supplied air respirator operated in pressure demand or other positive pressure mode.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

<u> </u>	в.	Ч
30	11	u.

Mixes with water.			
State	Divided solid	Molecular Weight	272.26
Melting Range (°F)	Not available	Viscosity	Not Applicable
Boiling Range (°F)	Not available.	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not Available	pH (1% solution)	10-11 (10%)
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available.	Vapor Pressure (mmHG)	Not applicable.
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available.
Lower Explosive Limit (%)	Not available.	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	Not applicable.	Evaporation Rate	Not applicable

APPEARANCE

Crystalline powder; mixes with water (12). Darkens on exposure to light. On exposure to moist air it absorbs carbon dioxide with the liberation of sulfadiazine and becomes insoluble in water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

STORAGE INCOMPATIBILITY

- Avoid strong acids, bases.
- Avoid reaction with oxidizing agents
- Avoid contact with iron salts and heavy metal salts.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

sulfadiazine sodium

TOXICITY AND IRRITATION

SULFADIAZINE SODIUM

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY	IRRITATION
Oral (mouse) LD50 1700 mg/kg	Nil Reported
Intraperitoneal (mouse) LD50 1747 mg/kg	

Subcutaneous (mouse) LD50 1400 mg/kg

• Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Allergic reactions involving the respiratory tract are usually due to interactions between IgE antibodies and allergens and occur rapidly. Allergic potential of the allergen and period of exposure often determine the severity of symptoms. Some people may be genetically more prone than others, and exposure to other irritants may aggravate symptoms. Allergy causing activity is due to interactions with proteins.

Attention should be paid to atopic diathesis, characterised by increased susceptibility to nasal inflammation, asthma and eczema.

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

Reproductive effector in mice

Section 12 - ECOLOGICAL INFORMATION

Toxic to soil organisms.

This material and its container must be disposed of as hazardous waste.

Ecotoxicity				
Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
sulfadiazine sodium	HIGH	No Data Available	LOW	MED

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and MSDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material)

• Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

DOT:			
Symbols:	None	Hazard class or Division:	6.1
Identification Numbers:	UN3249	PG:	III
Label Codes:	6.1	Special provisions:	T1, TP33
Packaging: Exceptions:	153	Packaging: Non-bulk:	213
Packaging: Exceptions:	153	Quantity limitations: Passenger aircraft/rail:	5 kg
Quantity Limitations: Cargo aircraft only:	5 kg	Vessel stowage: Location:	С
Vessel stowage: Other:	40		
Hazardous materials descriptions Medicine, solid, toxic, n.o.s. Air Transport IATA:	and proper shipping names:		
ICAO/IATA Class:	6.1	ICAO/IATA Subrisk:	None
UN/ID Number:	3249	Packing Group:	III
Special provisions:	A3		
Cargo Only			
Packing Instructions:	677	Maximum Qty/Pack:	200 kg
Passenger and Cargo		Passenger and Cargo	
Packing Instructions:	670	Maximum Qty/Pack:	100 kg
Passenger and Cargo Limited Quantity		Passenger and Cargo Limited Quantity	
Packing Instructions:	Y645	Maximum Qty/Pack:	5 kg
Shipping name:MEDICINE, SOLII Maritime Transport IMDG:	D, TOXIC, N.O.S.(contains sulfadia	azine sodium)	
IMDG Class:	6.1	IMDG Subrisk:	None
UN Number:	3249	Packing Group:	III
EMS Number:	F-A,S-A	Special provisions:	221 223
Limited Quantities:	5 kg D. TOXIC, N.O.S.(contains sulfadia	azine sodium)	

Shipping name: MEDICINE, SOLID, TOXIC, N.O.S. (contains sulfadiazine sodium)

Section 15 - REGULATORY INFORMATION

sulfadiazine sodium (CAS: 547-32-0) is found on the following regulatory lists; "Canada Domestic Substances List (DSL)"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation and/or skin contact may produce health damage*.
 Cumulative effects may result following exposure*.
- Limited evidence of a carcinogenic effect*.
- May affect fertility*.

* (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance	CAS
sulfadiazine sodium	547- 32- 0

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

■ For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards:

OSHA Standards - 29 CFR: 1910.132 - Personal Protective Equipment - General requirements 1910.133 - Eye and face protection 1910.134 - Respiratory Protection 1910.136 - Occupational foot protection 1910.138 - Hand Protection Eye and face protection - ANSI Z87.1 Foot protection - ANSI Z41 Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. www.Chemwatch.net

Issue Date: Mar-25-2009 Print Date:Feb-3-2012