Tetraethylammonium bromide

sc-251173

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Tetraethylammonium bromide

STATEMENT OF HAZARDOUS NATURE

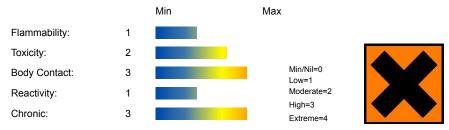
CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

HEALTH AZARD INST BLITY

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY:


ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C8-H20-Br-N, (C2H4)4NBr, "ammonium, tetraethyl-, bromide", "ethanaminium, N, N, N-triethyl-, bromide", "tetraethyl ammonium bromide", TEAB, "TEA bromide", "N, N, N-triethylethanaminium bromide", "tetrylammonium bromide", "USAF DO-32", Beparon, Etambro, Etylon, Sympatektoman, "quaternary ammonium compound"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK

Harmful if swallowed. Irritating to eyes, respiratory system and skin. Toxic to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Anticholinergics can cause loss of vision.

Effects associated with their use include increased heart rate, decreased saliva production and other secretions and reduction in bowel movements

■ Quaternary ammonium anticholinergic agents, in high doses, can cause postural hypotension and impotence. Paralysis may occur at very high doses.

FYF

- This material can cause eye irritation and damage in some persons.
- If applied to the eyes, this material causes severe eye damage.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material can cause respiratory irritation in some persons.

The body's response to such irritation can cause further lung damage.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Chronic intoxication with ionic bromides, historically, has resulted from medical use of bromides but not from environmental or occupational exposure; depression, hallucinosis, and schizophreniform psychosis can be seen in the absence of other signs of intoxication. Bromides may also induce sedation, irritability, agitation, delirium, memory loss, confusion, disorientation, forgetfulness (aphasias), dysarthria, weakness, fatigue, vertigo, stupor, coma, decreased appetite, nausea and vomiting, diarrhoea, hallucinations, an acne like rash on the face, legs and trunk, known as bronchoderma (seen in 25-30% of case involving bromide ion), and a profuse discharge from the nostrils (coryza). Ataxia and generalised hyperreflexia have also been observed. Correlation of neurologic symptoms with blood levels of bromide is inexact. The use of substances such as brompheniramine, as antihistamines, largely reflect current day usage of bromides; ionic bromides have been largely withdrawn from therapeutic use due to their toxicity. Several cases of foetal abnormalities have been described in mothers who took large doses of bromides during pregnancy.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS					
NAME	CAS RN	%			
tetraethylammonium bromide	71-91-0	>98			
commercial product may contain					
triethylamine hydrobromide	636-70-4				

Section 4 - FIRST AID MEASURES

SWALLOWED

 \cdot IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. \cdot Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

FYF

■ If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN

■ Treatment regime for atropine intoxication: Empty the stomach by aspiration and lavage. The use of charcoal to prevent absorption, followed by lavage has been suggested. <\div>.

Section 5 - FIRE FIGHTING MEASURES					
Vapour Pressure (mmHG):	Negligible				
Upper Explosive Limit (%):	Not available				
Specific Gravity (water=1):	Not available				
Lower Explosive Limit (%):	Not available				

EXTINGUISHING MEDIA

- · Water spray or fog.
- · Foam.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen bromide, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- · Wear protective clothing, gloves, safety glasses and dust respirator.
- · Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- \cdot Dampen with water to prevent dusting before sweeping.
- · Place in suitable containers for disposal.

MAJOR SPILLS

- Moderate hazard.
- · CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- · Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
Canada - Ontario Occupational Exposure Limits	tetraethylammonium bromide (Particles (Insoluble or Poorly Soluble) Not Otherwise)		10 (I)						
Canada - British Columbia Occupational Exposure Limits	tetraethylammonium bromide (Particles (Insoluble or Poorly Soluble) Not Otherwise Classified (PNOC))		10 (N)						
Canada - Ontario Occupational Exposure Limits	tetraethylammonium bromide (Specified (PNOS) / Particules (insolubles ou peu solubles) non précisées par ailleurs)		3 (R)						
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	tetraethylammonium bromide (Particulates not otherwise regulated Respirable fraction)		5						
US - California Permissible Exposure Limits for Chemical Contaminants	tetraethylammonium bromide (Particulates not otherwise regulated Respirable fraction)		5						(n)
US - Oregon Permissible Exposure Limits (Z-1)	tetraethylammonium bromide (Particulates not otherwise regulated (PNOR) (f)	-	10						Bold print identifies substances for which the

Total Dust)

Oregon
Permissible
Exposure
Limits
(PELs) are
different than
the federal
Limits.
PNOR
means
"particles not
otherwise
regulated."

US - Michigan Exposure Limits for Air Contaminants tetraethylammonium bromide (Particulates not otherwise regulated, Respirable dust)

5

US - Oregon Permissible Exposure Limits (Z-1) tetraethylammonium bromide (Particulates not otherwise regulated (PNOR) (f) Respirable Fraction)

5

Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. **PNOR** means "particles not otherwise regulated."

US - Wyoming

Toxic and tetraethylammonium
Hazardous bromide (Particulates
Substances not otherwise
Table Z1 Limits regulated (PNOR)(f)for Air Respirable fraction)

5

Canada -Prince Edward Island Occupational Exposure

Limits

tetraethylammonium bromide (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)

10

See Appendix B current TLV/BEI Book

ENDOELTABLE

The following materials had no OELs on our records
• triethylamine hydrobromide: CAS:636-70-4

PERSONAL PROTECTION

RESPIRATOR

• particulate.

EYE

- \cdot Safety glasses with side shields.
- · Chemical goggles.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- · frequency and duration of contact,
- chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- · nitrile rubber
- · butyl rubber
- fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · Overalls.
- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

ENGINEERING CONTROLS

- · Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- · Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Mixes with water.

WILLES WILLI WALEI.			
State	Divided solid	Molecular Weight	210.16
Melting Range (°F)	545 (decomp)	Viscosity	Not Applicable
Boiling Range (°F)	Not available.	Solubility in water (g/L)	Miscible
Flash Point (°F)	>230	pH (1% solution)	6.5 (10%)
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

White deliquescent crystalline powder; mixes with water, alcohol, chloroform, acetone.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

tetraethylammonium bromide

TOXICITY AND IRRITATION

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

TETRAETHYLAMMONIUM BROMIDE:

TOXICITY IRRITATION
Intraperitoneal (rat) LD50: 180 mg/kg Nil Reported
Subcutaneous (rat) LD50: 200 mg/kg
Intravenous (rat) LD50: 63 mg/kg
Oral (mouse) LD50: >2000 mg/kg
Intraperitoneal (mouse) LD50: 50 mg/kg
Intravenous (mouse) LD50: 14.2 mg/kg
Intravenous (dog) LD50: 55 mg/kg
Intravenous (rabbit) LD50: 72 mg/kg

■ Most undiluted cationic surfactants satisfy the criteria for classification as Harmful (Xn) with R22 and as Irritant (Xi) for skin and eyes with R38 and R41.

Section 12 - ECOLOGICAL INFORMATION

Toxic to aquatic organisms.

Ecotoxicity

Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility

tetraethylammonium LOW NO Data

bromide Available LOVV IVIED

No Data No Data

triethylamine hydrobromide Available Available

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

! Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- · Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

tetraethylammonium bromide (CAS: 71-91-0) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

Regulations for ingredients

triethylamine hydrobromide (CAS: 636-70-4) is found on the following regulatory lists;

"Canada Non-Domestic Substances List (NDSL)","US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- Eye contact may produce serious damage*.
- May be harmful to the foetus/ embryo*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Dec-30-2007 Print Date:Jun-16-2011