γ-Caprolactone

sc-251458

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

γ-Caprolactone

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

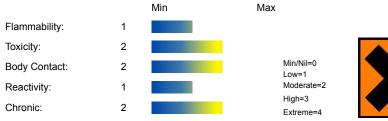
Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE


■ Intermediate.

SYNONYMS

C6-H10-O2, "2(3H)-furanone, 5-ethyldihydro-", 6-caprolactone, gamma-ethylbutyrolactone, gamma-ethyl-n-butyrolactone, gamma-hexanollactone, "hexanolide-1, 4", "4-hydroxyhexanoic acid lactone", Tonkalide, Toukalide

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Irritating to eyes, respiratory system and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- Severe over-exposure to gamma-butyrolactone (GBL) may lead to coma and possible death due to respiratory failure. Ingestion may also cause kidney damage and peripheral neuropathy, a progressive disorder of the nervous system, characterised by sensory and motor abnormalities, muscle spasms, weakness and pain in the arms and legs, numbness and tingling of the fingers and toes and paralysis.

EYE

■ This material can cause eye irritation and damage in some persons.

SKIN

- The material may cause mild but significant inflammation of the skin either following direct contact or after a delay of some time.
- Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHVIED

■ The material can cause respiratory irritation in some persons.

The body's response to such irritation can cause further lung damage.

■ Inhalation of vapours may cause drowsiness and dizziness.

This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

- Inhalation hazard is increased at higher temperatures.
- Inhalation of high concentrations of gas/vapor causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowing of reflexes, fatigue and inco-ordination.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

gamma-Butyrolactone is rapidly converted to gamma-hydroxybutyric acid by enzymes in the blood and liver of animals and humans. An equivocal response produced by the lactone, in carcinogenicity studies in rats, has been reported in terms of its ability to increase the incidence of pheochromocytomas in the renal medulla. Because of the rapid and extensive conversion of gamma-butyrolactone to the acid, the evaluation of the lactone was in fact an evaluation of gamma-hydroxybutric acid.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
gamma-caprolactone	695-06-7	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

· If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

EYE

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES Vapour Pressure (mmHG): Not available Upper Explosive Limit (%): Not available Specific Gravity (water=1): 1.027 Lower Explosive Limit (%): Not available

EXTINGUISHING MEDIA

- · Foam.
- · Dry chemical powder.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear full body protective clothing with breathing apparatus.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible.
- · Slight fire hazard when exposed to heat or flame.

Combustion products include: carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Type A Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.

MAJOR SPILLS

- Moderate hazard.
- · Clear area of personnel and move upwind.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- \cdot DO NOT allow clothing wet with material to stay in contact with skin.
- \cdot Avoid all personal contact, including inhalation.
- \cdot Wear protective clothing when risk of exposure occurs.

RECOMMENDED STORAGE METHODS

- $\cdot \; \text{Metal can or drum}$
- $\cdot \ {\hbox{Packing as recommended by manufacturer}}.$

STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.
- · No smoking, naked lights or ignition sources.
- · Store in a cool, dry, well-ventilated area.
- · Store away from incompatible materials and foodstuff containers.
- · Protect containers against physical damage and check regularly for leaks.
- · Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

• gamma-caprolactone: CAS:695-06-7

PERSONAL PROTECTION

RESPIRATOR

Type A Filter of sufficient capacity Consult your EHS staff for recommendations

EYE

- · Safety glasses with side shields.
- · Chemical goggles.

HANDS/FEET

■ Wear chemical protective gloves, eg. PVC.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

· Neoprene gloves.

OTHER

- · Overalls.
- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

ENGINEERING CONTROLS

■ General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid.

Does not mix with water.

Sinks in water.

State	Liquid	Molecular Weight	114.14
Melting Range (°F)	Not available	Viscosity	Not Available
Boiling Range (°F)	426.2	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	208.4	pH (1% solution)	Not applicable.
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Not available
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	1.027
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not available
Volatile Component (%vol)	Not available	Evaporation Rate	Not available

APPEARANCE

Colourless liquid; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY

■ For gamma-butyrolactone (GBL):

In an altered process to prepare 2,4-dichlorophenoxybutric acid, GBL was added to the other components butanol, 2,4-dichlorophenol, sodium hydroxide), and soon after, the reaction temperature reacted 165 C, higher than the usual 160 C. Application of cooling failed to check thermal runaway and the vessel began to fail at 180 deg C with explosion and fire.

Avoid reaction with oxidizing agents.

Avoid strong bases.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

GAMMA-CAPROLACTONE

TOXICITY AND IRRITATION

GAMMA-CAPROLACTONE:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Skin (rabbit): 500 mg/24h-Mild

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The systemic toxicity of gamma-butyrolactone (GBL) has been investigated in a full 2-year bioassay in rats and mice that employed gavage dosing (NTP, 1992). The most sensitive effect observed in these studies was clinical signs of CNS toxicity (lethargy) with a NOAEL of 112 mg/kg-day in rats. The only other treatment-related effect observed in rats and mice was for decreased body weight. Thymic depletion was observed in high dose male mice. The authors attributed this reduction to stress induced by fighting in high-dose males. The increased incidence of thymic depletion was similar in both the low- and high-dose males. The relevance of the thymus effects remains uncertain.

In other studies, no prenatal developmental effects were observed in rats at doses up to 500 mg/kg-day, while decreased testicular weight was reported in a short-term reproductive study with a LOAEL of 667 mg/kg-day.

GBL is metabolised in animals to gamma-hydroxybutyrate. (GHB). The oral toxicity data for GHB are primarily from clinical studies in human subjects or from case reports of oral poisonings. Transient dizziness and a sense of dullness in 50% of human subjects following a single oral dose of 12.5 mg/kg were observed. Standardized measure of psychomotor performance was not affected at this dose. Another study reported on the effects of single oral doses of 35-63 mg/kg GHB in human volunteers. All participants reported drowsiness during the experiment, and some participants receiving doses over 50 mg/kg were rendered unconscious. Medical anesthetic doses of GHB are typically in the range of 60 mg/kg.

A full 2-year cancer bioassay by the oral route has been conducted for the tetrahydrofuran (THF) - GBL is the major metabolite of THF (NTP, 1992),. This study which showed no evidence of carcinogenicity in rats (male and female) or female mice. The authors concluded that there was equivocal evidence of carcinogenic potential, based on increased incidence of adrenal medulla pheochromocytomas and hyperplasia. Mode-of-action studies for THF following exposure by the inhalation route also suggest that THF itself rather than a metabolite might be responsible for the observed liver and kidney responses. Based on these mode-of-action data and the difference in tumor responses for THF and GBL in NTP (1992) bioassays, the cancer bioassay data for THF metabolites cannot be used directly for the assessment of THF carcinogenicity in humans.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility gamma-caprolactone LOW LOW HIGH

GESAMP/EHS COMPOSITE LIST - GESAMP Hazard Profiles

Legend: EHS=EHS Number (EHS=GESAMP Working Group on the Evaluation of the Hazards of Harmful Substances Carried by Ships) NRT=Net Register Tonnage, A1a=Bioaccumulation log Pow, A1b=Bioaccumulation BCF, A1=Bioaccumulation, A2=Biodegradation, B1=Acuteaquatic toxicity LC/ECIC50 (mg/l), B2=Chronic aquatic toxicity NOEC (mg/l), C1=Acute mammalian oral toxicity LD50 (mg/kg), C2=Acutemammalian dermal toxicity LD50 (mg/kg), C3=Acute mammalian inhalation toxicity LC50 (mg/kg), D1=Skin irritation & corrosion, D2=Eye irritation& corrosion, D3=Long-term health effects, E1=Tainting, E2=Physical effects on wildlife & benthic habitats, E3=Interference with coastal amenities, For column A2: R=Readily biodegradable, NR=Not readily biodegradable. For column D3: C=Carcinogen, M=Mutagenic, R=Reprotoxic, S=Sensitising, A=Aspiration hazard, T=Target organ systemic toxicity, L=Lunginjury, N=Neurotoxic, I=Immunotoxic. For column E1: NT=Not tainting (tested), T=Tainting test positive. For column E2: Fp=Persistent floater, F=Floater, S=Sinking substances. The numerical scales start from 0 (no hazard), while higher numbers reflect increasing hazard. (GESAMP/EHS Composite List of Hazard Profiles - Hazard evaluation of substances transported by ships)

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- · Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible or consult manufacturer for recycling options.
- · Consult Waste Management Authority for disposal.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

gamma-caprolactone (CAS: 695-06-7) is found on the following regulatory lists;

"International Fragrance Association (IFRA) Survey: Transparency List", "US Food Additive Database", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jul-23-2009
Print Date: Jan-25-2011