# Lithium diisopropylamide

# sc-252958

Material Safety Data Sheet



Hazard Alert Code Key:

**EXTREME** 

HIGH

MODERATE

LOW

# Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

## **PRODUCT NAME**

Lithium diisopropylamide

# STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

## **NFPA**



#### **SUPPLIER**

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255

(1-800-CHEMCALL) or call +613 9573 3112

# **PRODUCT USE**

Hindered non-nucleophilic strong base used for the generation of carbanions.

#### **SYNONYMS**

C6-H14-Li-N, [(CH3)2CH]2NLi, LDA, lithiodiisopropylamine

# **Section 2 - HAZARDS IDENTIFICATION**

# **CANADIAN WHMIS SYMBOLS**







# **EMERGENCY OVERVIEW**

# RISK

Spontaneously flammable in air.

Causes burns.

Risk of serious damage to eyes.

Reacts violently with water liberating extremely flammable gases.

Highly flammable.

May cause fire.

#### POTENTIAL HEALTH EFFECTS

#### **ACUTE HEALTH EFFECTS**

#### **SWALLOWED**

- The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- Accidental ingestion of the material may be damaging to the health of the individual.
- Lithium, in large doses, can cause dizziness and weakness. If a low salt diet is in place, kidney damage can result. There may be dehydration, weight loss, skin effects and thyroid disturbances. Central nervous system effects include slurred speech, blurred vision, numbness, inco-ordination and convulsions. Repeated exposure can cause diarrhea, vomiting, tremor, muscle jerks and very brisk reflexes.
- Pyrophoric compounds may produce gastrointestinal damage resulting fromlocal generation of heat.

#### **EYE**

- The material can produce chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
- If applied to the eyes, this material causes severe eye damage.
- Pyrophoric compounds may produce thermal burns on contact with the eye.

#### SKIN

- The material can produce chemical burns following direct contactwith the skin.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Pyrophoric compounds can produce irritation with a range of severity. Deep burns can occur in severe cases, with shock.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

#### **INHALED**

- If inhaled, this material can irritate the throat andlungs of some persons.
- The material is not thought to produce adverse health effects following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Pyrophoric compounds may decompose giving rise to potent irritants of therespiratory tract.

#### **CHRONIC HEALTH EFFECTS**

• Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Gastrointestinal disturbances may also occur. Chronic exposures may result in dermatitis and/or conjunctivitis.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Lithium compounds can affect the nervous system and muscle. This can cause tremor, inco-ordination, spastic jerks and very brisk reflexes. They may cause birth defects and should not be used when pregnancy is suspected. They are effective in treating manic episodes of bipolar disorder. Restricting sodium in the diet increases the risks of taking lithium.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

# **Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS**

#### **HAZARD RATINGS**

|               |   | Min | Max                 |    |
|---------------|---|-----|---------------------|----|
| Flammability: | 3 |     |                     |    |
| Toxicity:     | 2 |     |                     | ~~ |
| Body Contact: | 3 |     | Min/Nil=0<br>Low=1  |    |
| Reactivity:   | 2 |     | Moderate=2          |    |
| Chronic:      | 2 |     | High=3<br>Extreme=4 |    |

| NAME                     | CAS RN    | %   |
|--------------------------|-----------|-----|
| lithium diisopropylamide | 4111-54-0 | >98 |
| hydrolysis yields        |           |     |
| lithium hydroxide        | 1310-66-3 |     |
| dipropylamine            | 142-84-7  |     |

## **Section 4 - FIRST AID MEASURES**

#### **SWALLOWED**

- For advice, contact a Poisons Information Center or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Transport to hospital or doctor without delay.

#### **FYF**

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

#### For THERMAL burns:

- Do NOT remove contact lens
- Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick
  pads under dressing, above and below the eye.
- · Seek urgent medical assistance, or transport to hospital.

#### SKIN

- · If skin or hair contact occurs:
- Immediately flush body and clothes with large amounts of water, using safety shower if available.
- Quickly remove all contaminated clothing, including footwear.
- Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Center.
- Transport to hospital, or doctor.

#### In case of burns:

- Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth.
- DO NOT remove or cut away clothing over burnt areas. DO NOT pull away clothing which has adhered to the skin as this can cause further injury.
- DO NOT break blister or remove solidified material.
- Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain.
- For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth.
- DO NOT apply ointments, oils, butter, etc. to a burn under any circumstances.
- Water may be given in small quantities if the person is conscious.
- Alcohol is not to be given under any circumstances.
- Reassure
- Treat for shock by keeping the person warm and in a lying position.
- Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of arrival of the patient.

#### **INHALED**

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
   Perform CPR if necessary.
- Transport to hospital, or doctor.

#### **NOTES TO PHYSICIAN**

- · Clinical effects of lithium intoxication appear to relate to duration of exposure as well as to level.
- Lithium produce a generalized slowing of the electroencephalogram; the anion gap may increase in severe cases.
- Emesis (or lavage if the patient is obtunded or convulsing) is indicated for ingestions exceeding 40 mg (Li)/Kg.
- Overdose may delay absorption; decontamination measures may be more effective several hours after cathartics.
- Charcoal is not useful. No clinical data are available to guide the administration of catharsis.
- Haemodialysis significantly increases lithium clearance; indications for hemodialysis include patients with serum levels above 4 mEq/L 6.There are no antidotes.

[Ellenhorn and Barceloux: Medical Toxicology].

|                            | Section 5 - FIRE FIGHTING MEASURES |
|----------------------------|------------------------------------|
| Vapour Pressure (mmHG):    | Negligible                         |
| Upper Explosive Limit (%): | Not available                      |

Specific Gravity (water=1): Not available
Lower Explosive Limit (%): Not available

#### **EXTINGUISHING MEDIA**

• DO NOT USE WATER, CO2 OR FOAM ON SUBSTANCE ITSELF

For SMALL FIRES:

Dry chemical, soda ash or lime.

For LARGE FIRES:

- DRY sand, dry chemical, soda ash;
- · OR withdraw and allow fire to burn itself out.

#### **FIRE FIGHTING**

.

- Wear SCBA and fully-encapsulating, gas-tight suits when handling these substances.
- Always wear thermal protective clothing when handling molten substances.
- Structural fire fighter's uniform will only provide limited protection.
- Alert Emergency Responders and tell them location and nature of hazard.
- May be violently or explosively reactive.
- Wear full protective clothing plus breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place)
- DO NOT use water on fires.

CAUTION: If only water available, use flooding quantities of water or withdraw personnel.

- DO NOT allow water to enter containers.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with flooding quantities of water from a protected location until well after fire is out.
- If safe to do so, remove undamaged containers from path of fire.
- If fire gets out of control withdraw personnel and warn against entry.
- Equipment should be thoroughly decontaminated after use.
- Fight fire from a protected position or use unmanned hose holders or monitor nozzles.
- Withdraw immediately in case of rising sound from venting safety devices or discolouration of tanks.
- ALWAYS stay away from tank ends.

#### GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

.

- May ignite on contact with air, moist air or water.
- May react vigorously or explosively on contact with water.
- May decompose explosively when heated or involved in fire.
- May REIGNITE after fire is extinguished.
- Gases generated after contact with water or moist air may be poisonous, corrosive or irritating.
- Gases generated in fire may be poisonous, corrosive or irritating.
- Containers may explode on heating.
- Runoff may create multiple fire or explosion hazard.

Combustion products include: carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

#### FIRE INCOMPATIBILITY

• Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result. Segregate from alcohol, water.

## **PERSONAL PROTECTION**

Glasses:

Full face- shield.

Gloves:

Respirator:

Type AK-P Filter of sufficient capacity

#### Section 6 - ACCIDENTAL RELEASE MEASURES

#### MINOR SPILLS

- Eliminate all ignition sources.
- Cover with DRY earth, sand or other non-combustible material.
- Then cover with plastic sheet to minimize spreading and to prevent exposure to rain or other sources of water.
- Use clean, non-sparking tools to collect absorbed material and place into loosely-covered metal or plastic containers ready for disposal.
- Wear gloves and safety glasses as appropriate.

# MAJOR SPILLS

•

- Clear area of personnel and move upwind.
- Alert Emergency Responders and tell them location and nature of hazard.
- Eliminate all ignition sources (no smoking, flares, sparks or flames)
- Stop leak if safe to do so; prevent entry into waterways, drains or confined spaces.

- May be violently or explosively reactive.
- DO NOT walk through spilled material.
- Wear full protective clothing plus breathing apparatus.
- DO NOT touch damaged containers or spilled material unless wearing appropriate protective clothing.
- Water spray may be used to knock down vapors or divert vapor clouds; DO NOT allow water to enter container or come into contact with the material.
- Cover with DRY earth, sand, vermiculite or other non-combustible material.
- Then cover with plastic sheet to minimize spreading and to prevent exposure to rain or other sources of water.
- Use clean, non-sparking tools to collect absorbed material and place into loosely-covered metal or plastic containers ready for disposal.
- Alternately, the spill may be contained using DRY earth, sand, or vermiculite and then covered with a high boiling point mineral oil.
- Recover the liquid using non-sparking appliances and place in labeled, sealable container.
- Wash spill area with detergent and water and dike for later disposal.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

# ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

#### Section 7 - HANDLING AND STORAGE

## PROCEDURE FOR HANDLING

•

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of overexposure occurs.
- Use in a well-ventilated area.
- Avoid contact with moisture.
- Avoid smoking, naked lights or ignition sources.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately and before re-use
- Use good occupational work practice.
- Observe manufacturer's storing/handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

NOTE: The material may remove oxygen from the air thus producing a severe hazard to workers inside enclosed or confined spaces where the material might accumulate. Before entry to such areas, sampling and test procedures for low oxygen levels should be undertaken; control conditions should be established to ensure the availability of adequate oxygen supply.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

#### **RECOMMENDED STORAGE METHODS**

- For low viscosity materials and solids: Drums and jerricans must be of the non-removable head type. Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C):
- Removable head packaging and
- cans with friction closures may be used.

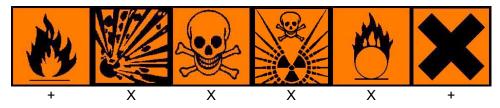
Where combination packages are used, there must be sufficient inert absorbent material to absorb completely any leakage that may occur, unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic. All combination packages for Packing group I and II must contain cushioning material.

#### STORAGE REQUIREMENTS

• Store under an inert gas, e.g. argon or nitrogen.

KEEP DRY! Packages must be protected from water ingress.

FOR MINOR QUANTITIES:


Store in an indoor fireproof cabinet or in a room of noncombustible construction and

• provide adequate portable fire-extinguishers in or near the storage area.

#### FOR PACKAGE STORAGE:

- Store in original containers in approved flame-proof area.
- No smoking, naked lights, heat or ignition sources.
- DO NOT store in pits, depressions, basements or areas where vapors may be trapped.
- · Keep containers securely sealed.
- Store away from incompatible materials in a cool, dry well ventilated area.
- Protect containers against physical damage and check regularly for leaks.
- Protect containers from exposure to weather and from direct sunlight unless: (a) the packages are of metal or plastic construction; (b) the
  packages are securely closed are not opened for any purpose while in the area where they are stored and (c) adequate precautions are
  taken to ensure that rain water, which might become contaminated by the dangerous goods, is collected and disposed of safely.
- Ensure proper stock-control measures are maintained to prevent prolonged storage of dangerous goods.
- Automatic fire-sprinklers MUST NOT be installed in room or space.
- The room or space must be located at least five meters from the boundaries of the premises and from other buildings unless separated by a wall with a fire resistance of at least four hours.
- Observe manufacturer's storing and handling recommendations.

#### SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS



- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

# Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

#### **EXPOSURE CONTROLS**

| Source                                                                                 | Material                                                                                      | TWA<br>ppm | TWA<br>mg/m³ | STEL ppm | STEL<br>mg/m³ | Peak<br>ppm | Peak<br>mg/m³ | TWA<br>F/CC | Notes |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------|--------------|----------|---------------|-------------|---------------|-------------|-------|
| US - Oregon Permissible Exposure Limits (Z3)                                           | lithium diisopropylamide (Inert or<br>Nuisance Dust: (d) Total dust)                          |            | 10           |          |               |             |               |             | *     |
| US OSHA Permissible Exposure<br>Levels (PELs) - Table Z3                               | lithium diisopropylamide (Inert or<br>Nuisance Dust: (d) Respirable<br>fraction)              |            | 5            |          |               |             |               |             |       |
| US OSHA Permissible Exposure<br>Levels (PELs) - Table Z3                               | lithium diisopropylamide (Inert or<br>Nuisance Dust: (d) Total dust)                          |            | 15           |          |               |             |               |             |       |
| US - Hawaii Air Contaminant<br>Limits                                                  | lithium diisopropylamide (Particulates not other wise regulated - Total dust)                 |            | 10           |          |               |             |               |             |       |
| US - Hawaii Air Contaminant<br>Limits                                                  | lithium diisopropylamide (Particulates not other wise regulated - Respirable fraction)        |            | 5            |          |               |             |               |             |       |
| US - Oregon Permissible<br>Exposure Limits (Z3)                                        | lithium diisopropylamide (Inert or<br>Nuisance Dust: (d) Respirable<br>fraction)              |            | 5            |          |               |             |               |             | *     |
| US - Tennessee Occupational<br>Exposure Limits - Limits For Air<br>Contaminants        | lithium diisopropylamide (Particulates not otherwise regulated Respirable fraction)           |            | 5            |          |               |             |               |             |       |
| US - Wyoming Toxic and<br>Hazardous Substances Table Z1<br>Limits for Air Contaminants | lithium diisopropylamide (Particulates not otherwise regulated (PNOR)(f)-Respirable fraction) |            | 5            |          |               |             |               |             |       |
| US - Michigan Exposure Limits for Air Contaminants                                     | lithium diisopropylamide (Particulates<br>not otherwise regulated, Respirable<br>dust)        |            | 5            |          |               |             |               |             |       |
| Canada - British Columbia<br>Occupational Exposure Limits                              | lithium hydroxide (Lithium hydroxide)                                                         |            |              |          |               |             | 1             |             |       |
| Canada - Ontario Occupational Exposure Limits                                          | lithium hydroxide (Lithium hydroxide, Anyhydrous)                                             |            |              |          | 1             |             |               |             |       |

US AIHA Workplace
Environmental Exposure Levels lithium hydroxide (Lithium Hydroxide) 1
(WEELs)

Canada - Ontario Occupational lithium hydroxide (Lithium hydroxide, Exposure Limits Monohydrate)

#### **MATERIAL DATA**

LITHIUM DIISOPROPYLAMIDE:

LITHIUM HYDROXIDE:

• It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

LITHIUM DIISOPROPYLAMIDE:

LITHIUM HYDROXIDE:

• Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- · cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

#### LITHIUM HYDROXIDE:

OEH STEL: 1 mg/m3

CEL STEL: 1 mg/m3 (1.75 mg/m3 LiOH.H2O)

[compare WEEL-C, 1 minute time weighted average]

Lithium hydroxide produces respiratory irritation and tissue injury in a similar fashion to that produced by sodium and potassium hydroxides which have TLV-Cs of 2 mg/m3. This is equivalent to 1.2 and 0.85 mg LiOH/m3, respectively on a molar basis. Respiratory irritation has been reported below these limits. The AlHA has established a workplace environmental exposure level (WEEL) partly by analogy with the alkaline earth hydroxides. The lithium ion has toxic properties not exhibited by sodium. At the WEEL-Ceiling value (1.0 ,g/m3), the maximum daily intake would be 2.9 mg Li, or 0.04 mg/kg for a 70 kg person (assuming 10 m3 average breathing volume). This is considerably below therapeutic or toxic levels. The WEEL is thought to be protective against respiratory irritation. The short-term limit should also ensure and average workshift exposure well below 1 mg/m3.

# DIPROPYLAMINE:

• Exposure limits with "skin" notation indicate that vapor and liquid may be absorbed through intact skin. Absorption by skin may readily exceed vapor inhalation exposure. Symptoms for skin absorption are the same as for inhalation. Contact with eyes and mucous membranes may also contribute to overall exposure and may also invalidate the exposure standard.

CEL TWA: 5 ppm, 21 mg/m3 (skin) (as analogue for di-iso-propylamine)

# PERSONAL PROTECTION









Consult your EHS staff for recommendations

#### EYE

- · Chemical goggles.
- Full face shield.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them.

#### HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and

dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Fire resistant/ heat resistant gloves where practical, otherwise
- Heavy-duty chemically resistant gloves capable of providing short-term protection against spontaneous ignition.

#### OTHER

• Wear protective clothing appropriate for the work situation.

For large scale or continuous use, when handling dry powder, wear:

- non-sparking safety footwear,
- tight-weave, non-static, noncombustible or flameproof clothing without cuffs, metallic fasteners, pockets, or laps in which powder may collect.
- Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets), non sparking safety footwear.

•

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may
  be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a
  complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

#### **RESPIRATOR**

| Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator |
|-------------------|----------------------|----------------------|------------------------|
| 10 x PEL          | AK P1                | -                    | AK PAPR-P1             |
|                   | Air-line*            | -                    | -                      |
| 50 x PEL          | Air-line**           | AK P2 AK             | PAPR-P2                |
| 100 x PEL         | -                    | AK P3                | -                      |
|                   |                      | Air-line*            | -                      |
| 100+ x PEL        | -                    | Air-line**           | AK PAPR-P3             |

<sup>\* -</sup> Negative pressure demand \*\* - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

# **ENGINEERING CONTROLS**

- Inhalation risk of a pyrophoric material is low however risks of inhalation of combustion products may requires respiratory protection. It is recommended that this material be handled in a closed system or in a fume hood.
- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a
  certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:

(a): particle dust respirators, if necessary, combined with an absorption cartridge;

(b): filter respirators with absorption cartridge or canister of the right type;

(c): fresh-air hoods or masks

- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant: Air Speed:

direct spray, spray painting in shallow booths, drum filling, conveyer

loading, crusher dusts, gas discharge (active generation into zone of 1-2.5 m/s (200-500 f/min.)

grinding, abrasive blasting, tumbling, high speed wheel generated

dusts (released at high initial velocity into zone of very high rapid air 2.5-10 m/s (500-2000 f/min.) motion).

Within each range the appropriate value depends on:

Lower end of the range

1: Room air currents minimal or favorable to capture

2: Contaminants of low toxicity or of nuisance value only

3: Intermittent, low production.

4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

# **Section 9 - PHYSICAL AND CHEMICAL PROPERTIES**

#### **PHYSICAL PROPERTIES**

Solid.

| State                     | Divided solid | Molecular Weight               | 107.13         |
|---------------------------|---------------|--------------------------------|----------------|
| Melting Range (°F)        | Decomposes    | Viscosity                      | Not Applicable |
| Boiling Range (°F)        | Not available | Solubility in water (g/L)      | Reacts         |
| Flash Point (°F)          | Not available | pH (1% solution)               | Not available  |
| Decomposition Temp (°F)   | Not Available | pH (as supplied)               | Not applicable |
| Autoignition Temp (°F)    | Not available | Vapour Pressure (mmHG)         | Negligible     |
| Upper Explosive Limit (%) | Not available | Specific Gravity (water=1)     | Not available  |
| Lower Explosive Limit (%) | Not available | Relative Vapor Density (air=1) | Not applicable |
| Volatile Component (%vol) | Negligible    | Evaporation Rate               | Not applicable |

#### **APPEARANCE**

White to off-white powder; reacts with water. Soluble in hexanes.

## **Section 10 - CHEMICAL STABILITY**

#### CONDITIONS CONTRIBUTING TO INSTABILITY

- May heat spontaneously
- Identify and remove sources of ignition and heating.
- Incompatible material, especially oxidizers, and/or other sources of oxygen may produce unstable product(s).
- Avoid sources of water contamination (e.g. rain water, moisture, high humidity).
- Avoid contact with oxygenated solvents/ reagents such as alcohols.

#### STORAGE INCOMPATIBILITY

· Segregate from alcohol, water.

Avoid strong acids.

Avoid reaction with oxidizing agents.

• NOTE: May develop pressure in containers; open carefully. Vent periodically.

For incompatible materials - refer to Section 7 - Handling and Storage.

## Section 11 - TOXICOLOGICAL INFORMATION

lithium diisopropylamide

#### **TOXICITY AND IRRITATION**

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

No significant acute toxicological data identified in literature search.

#### Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

LITHIUM HYDROXIDE:

DIPROPYLAMINE:

LITHIUM DIISOPROPYLAMIDE:

· DO NOT discharge into sewer or waterways.

LITHIUM HYDROXIDE:

LITHIUM DIISOPROPYLAMIDE:

• For lithium (anion):

Environmental fate:

Experiments with experimental animals have shown that lithium can have reprotoxic effects, and increasing consumption might therefore result in adverse effects on health and environment. Lithium has significant bioavailability only when administered as a partially soluble salt such as lithium carbonate. Lithium is not a dietary mineral for plants but it does stimulate plant growth.

Ecotoxicity:

Fish LC50 (28, 35 days) rainbow trout 9.28, 1.4 mg/l (salt)

Fish LC50 (96 h): fathead minnow 42 mg/l; NOEC 13 mg/l (salt)

Daphnia magna EC50 (48 h): 24 mg/l; NOEC 11 mg/l

Lithium is not expected to bioaccumulate in mammals and its human and environmental toxicity are low. Lithium does accumulate in several species of fish, molluscs and crustaceans where it stored in the digestive tract and exoskeleton

Methanogenesis of granular anaerobic sludge (initial COD 5750 mg/l O2, pH 7.2) was stimulated at lithium ion concentration 10-20 mg/l, slightly inhibited at lithium ion concentration 350 mg/l and seriously inhibited at lithium ion concentration > 500 mg/l.

Microinjection of lithium chloride into prospective ventral blastomeres of a 32-cell Xenopus larvis embryo gives rise to duplication of dorsoanterior structures such as the notochord, neural tube and eyes.

LITHIUM DIISOPROPYLAMIDE:

LITHIUM HYDROXIDE:

• Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. Environmental processes (such as oxidation and the presence of acids or bases) may transform insoluble metals to more soluble ionic forms. Microbiological processes may also transform insoluble metals to more soluble forms. Such ionic species may bind to dissolved ligands or sorb to solid particles in aquatic or aqueous media. A significant proportion of dissolved/ sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms.

When released to dry soil most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/ or surface water ecosystems when soaked by rain or melt ice. Environmental processes may also be important in changing solubilities. Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects.

A metal ion is considered infinitely persistent because it cannot degrade further.

The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation.

The counter-ion may also create heath and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable.

Environmental processes may enhance bioavailability.

• Prevent, by any means available, spillage from entering drains or watercourses.

DIPROPYLAMINE:

Ecotoxicity:

Fish LC50 (48 h): golden orfe >100-<500 mg/l (static)

Daphnia magna EC50 (48 h): 73.34 mg/l (79/831/EEC static)

Green algae EC50 (72 h): 13.15 mg/l (DIN 38412 Part 9 static)

Bacteria EC50 (17 h): 190 mg/l (DIN 38412 part 8 aquatic)

Activated sludge domestic EC50 (30 min) >1000 mg/l (OECD Guideline 209 aerobic, nominal)

Biodegradation:

Test method: OECD 301B; ISO 9439; 92/69/EEC, C.4-C, activated sludge, domestic

Method of analysis: CO2 formation relative to the theoretical value

Degree of elimination: 70 - 80 % (28 d)

Evaluation: Readily biodegradable (according to OECD criteria).

Bioaccumulation:

No significant accumulation in organisms is expected as a result of the distribution coefficient of noctanol/ water (log Pow).

Half-life (hr) air: 4.6

Half-life (hr) H2O surface water: 20

BCF: 1.04

Nitrif. inhib.: 50% inhib at 7.5mg/L

**Ecotoxicity** 

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility dipropylamine LOW LOW MED

# **Section 13 - DISPOSAL CONSIDERATIONS**

# **US EPA Waste Number & Descriptions**

A. General Product Information

Reactivity characteristic: use EPA hazardous waste number D003 (waste code R).

B. Component Waste Numbers

When dipropylamine is present as a solid waste as a discarded commercial chemical product, off-specification species, as a container residue, or a spill residue, use EPA waste number U110 (waste code I).

#### **Disposal Instructions**

All waste must be handled in accordance with local, state and federal regulations.

• Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

For small quantities:

- Neutralize an aqueous solution of the material.
- · Filter solids for disposal to approved land fill.
- Flush solution to sewer (subject to local regulation)
- Heat and fumes evolved during reaction may be controlledby rate of addition.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorized landfill.

#### Section 14 - TRANSPORTATION INFORMATION





# DOT:

| Symbols:                                   | G         | Hazard class or Division:                      | 4.2                 |
|--------------------------------------------|-----------|------------------------------------------------|---------------------|
| Identification Numbers:                    | UN3393    | PG:                                            | 1                   |
| Label Codes:                               | 4.2, 4.3  | Special provisions:                            | B11, T21, TP7, TP33 |
| Packaging: Exceptions:                     | None      | Packaging: Non-bulk:                           | 187                 |
| Packaging: Exceptions:                     | None      | Quantity limitations: Passenger aircraft/rail: | Forbidden           |
| Quantity Limitations: Cargo aircraft only: | Forbidden | Vessel stowage: Location:                      | D                   |
| Vessel stowage: Other:                     | 52        |                                                |                     |

Hazardous materials descriptions and proper shipping names: Organometallic substance, solid, pyrophoric, water-reactive

#### **Air Transport IATA:**

| ICAO/IATA Class:    | 4.2 (4.3) | ICAO/IATA Subrisk: | None |  |
|---------------------|-----------|--------------------|------|--|
| UN/ID Number:       | 3393      | Packing Group:     | -    |  |
| Special provisions: | None      |                    |      |  |

Cargo Only

Forbidden Forbidden Packing Instructions: Maximum Qty/Pack: Passenger and Cargo Passenger and Cargo Forbidden Forbidden Packing Instructions: Maximum Qty/Pack: Passenger and Cargo Limited Passenger and Cargo Limited Quantity Quantity Maximum Qty/Pack: Packing Instructions:

Shipping Name: ORGANOMETALLIC SUBSTANCE, SOLID, PYROPHORIC, WATER-REACTIVE \*(CONTAINS LITHIUM DIISOPROPYLAMIDE)

**Maritime Transport IMDG:** 

IMDG Class:4.2IMDG Subrisk:4.3UN Number:3393Packing Group:IEMS Number:F-G,S-MSpecial provisions:274

Limited Quantities: None

Shipping Name: ORGANOMETALLIC SUBSTANCE, SOLID, PYROPHORIC, WATER-REACTIVE(contains lithium diisopropylamide)

# **Section 15 - REGULATORY INFORMATION**

#### lithium diisopropylamide (CAS: 4111-54-0) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Toxic Substances Control Act (TSCA) - Inventory"

Regulations for ingredients

#### lithium hydroxide (CAS: 1310-66-3,1310-65-2) is found on the following regulatory lists;

"Canada - Ontario Occupational Exposure Limits", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)", "US - Minnesota Hazardous Substance List", "US - New Jersey Right to Know Hazardous Substances", "US DOE Temporary Emergency Exposure Limits (TEELs)"

#### dipropylamine (CAS: 142-84-7) is found on the following regulatory lists;

"Canada - Saskatchewan Industrial Hazardous Substances", "Canada Domestic Substances List (DSL)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "IMO IBC Code Chapter 17: Summary of minimum requirements", "IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk", "International Council of Chemical Associations (ICCA) - High Production Volume List", "OECD Representative List of High Production Volume (HPV) Chemicals", "US - Massachusetts Oil & Hazardous Material List", "US - New Jersey Right to Know Hazardous Substances", "US - Pennsylvania - Hazardous Substance List", "US - Vermont Hazardous wastes which are Discarded Commercial Chemical Products or Spill Residues of Either", "US - Washington Discarded Chemical Products List - ""U"" Chemical Products", "US Department of Transportation (DOT) List of Hazardous Substances and Reportable Quantities - Hazardous Substances Other Than Radionuclides", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US EPA High Production Volume Program Chemical List", "US List of Lists - Consolidated List of Chemicals Subject to the Emergency Planning and Community Right-to-Know Act (EPCRA) and Section 112(r) of the Clean Air Act", "US RCRA (Resource Conservation & Recovery Act) - List of Hazardous Wastes", "US Toxic Substances Control Act (TSCA) - Inventory", "US TSCA Section 8 (d) - Health and Safety Data Reporting"

## **Section 16 - OTHER INFORMATION**

# LIMITED EVIDENCE

- Ingestion may produce health damage\*.
- Cumulative effects may result following exposure\*.
- Possible risk of harm to breastfed babies\*.
- \* (limited evidence).

## Ingredients with multiple CAS Nos

Ingredient Name CA

lithium hydroxide 1310-66-3, 1310-65-2

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

• Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Oct-18-2009 Print Date:Jun-3-2010