Sodium 2-propanethiolate

sc-253576

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Sodium 2-propanethiolate

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

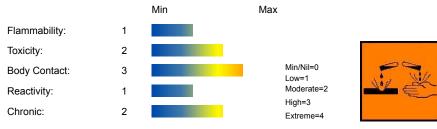
NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY:

ChemWatch


Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C3-H7-Na-S, (CH3)2CHSNa, "2-propanethiol sodium salt", alkanethiolate

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Causes burns.

Risk of serious damage to eyes.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.
- The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. <\p>.

EYE

- The material can produce chemical burns to the eye following direct contact. Vapors or mists may be extremely irritating.
- If applied to the eyes, this material causes severe eye damage.

SKIN

- The material can produce chemical burns following direct contactwith the skin.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Solution of material in moisture on the skin, or perspiration, may markedly increase skin corrosion and accelerate tissue destruction.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- If inhaled, this material can irritate the throat andlungs of some persons.
- Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
- Thiols (particularly ethyl mercaptan) produce lethargy or sleepiness. Exposure to high levels may result in nausea, vomiting, restlessness, muscle incoordination and or paralysis, bluing of skin, depression of breathing, coma and death.
- Prolonged exposure may cause headache, nausea and ultimately loss of consciousness.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

<q/>

Chronic exposure to mercaptans may result in damage to the lungs, kidneys and liver.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME CAS RN % sodium 2-propanethiolate 20607-43-6 >98

Section 4 - FIRST AID MEASURES

SWALLOWED

· For advice, contact a Poisons Information Center or a doctor at once. · Urgent hospital treatment is likely to be needed.

EYE

■ If this product comes in contact with the eyes: · Immediately hold eyelids apart and flush the eye continuously with running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin or hair contact occurs: · Immediately flush body and clothes with large amounts of water, using safety shower if available. · Quickly remove all contaminated clothing, including footwear.

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested. Inhalation of vapors or aerosols (mists, fumes) may cause lung edema. Corrosive substances may cause lung damage (e.g. <\p>.

NOTES TO PHYSICIAN

■ Treat symptomatically.

For acute or short-term repeated exposures to highly alkaline materials:

- · Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- · Unless endotracheal intubation can be accomplished under direct vision, cricothyroidotomy or tracheotomy may be necessary.

Section 5 - FIRE FIGHTING MEASURES			
Vapour Pressure (mmHG):	Negligible		
Upper Explosive Limit (%):	Not available.		
Specific Gravity (water=1):	Not available		
Lower Explosive Limit (%):	Not available		

EXTINGUISHING MEDIA

- · Foam.
- · Dry chemical powder.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear full body protective clothing with breathing apparatus.

When any large container (including road and rail tankers) is involved in a fire,

consider evacuation by 800 metres in all directions.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- · Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), sulfur oxides (SOx), other pyrolysis products typical of burning organic material.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Full face- shield.

Gloves:

Respirator:

Particulate dust filter.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- · Control personal contact by using protective equipment.
- · Use dry clean up procedures and avoid generating dust.
- · Place in a suitable, labelled container for waste disposal.
- · Drains for storage or use areas should have retention basins for pH adjustments and dilution of spills before discharge or disposal of material.
- · Check regularly for spills and leaks.

WARNING: Never use dry, powdered hypochlorite or other strong oxidizer for mercaptan spills, as autoignition can occur.

MAJOR SPILLS

- · Clear area of personnel and move upwind.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- The careful design and assembly of equipment is paramount to the control of mercaptan odors. Although careful planning reduces the chances for leaks developing in the system, it is important to be prepared to locate and stop small leaks promptly. It is recommended that a leak check be made prior to every run carried out under pressure in metal equipment with a mercaptan or hydrogen sulfide present. An effective method to obtain a leak-free system involves two steps:
- Charge the system with nitrogen gas or other inert, nontoxic gas to a pressure at least as high as will be used in practice, and check for a drop in pressure with time on a suitable gauge. In some cases, it is advantageous to block off sections of the system to facilitate finding the leak. If any leaks are detected by using a foaming detergent solution, correct them and recheck.
- Recharge the system with hydrogen sulfide gas. Since hydrogen sulfide is very toxic, it is good practice to charge the system in steps of
 increasing pressure, until it is certain that no large leaks are present. Any remaining small leaks can be located quickly by examining the
 system with lead acetate paper. Dilution of the hydrogen sulfide with nitrogen can also be considered.

To control odors in mercaptan reactions in the laboratory. All reactions must be carried out in a hood or, in the case of pressure reactions, in a closed in area equipped with an efficient exhaust fan. In the laboratory, the two basic types of reactions used are batch and continuous. Batch-type reactions at atmospheric pressure are generally conducted in glass equipment. If no significant quantity of a volatile mercaptan is present, the reaction can be carried out in a hood equipped with a charcoal bed in the exhaust line to absorb the mercaptan. In reactions

where appreciable quantities of a volatile mercaptan are present, a vent gas line can be connected to two caustic scrubbers in series, with an empty trap inserted between the reaction and scrubbers to avoid reverse flow of caustic into the reaction. Continuous-type reactions often include a continuous flow of volatile C1 to C4 mercaptans. In this case, the vented gases can be fed to an outside gas burner and stack for destruction of the odor by combustion.

A hood, equipped with a charcoal filter in the exhaust line, and a high linear air velocity (100 ft./min., minimum) is necessary for mercaptan reactions carried out in glass and certain small-scale reactions with stainless-steel. In reactions where relatively small amounts of mercaptans can escape, the charcoal bed can absorb the mercaptans and prevent the escape of odor to the outside atmosphere. However, in reactions with hydrogen sulfide or lower molecular weight mercaptans, e.g., C1-C4 mercaptans, the quantity of effluent gases is directed to an outside gas burner to convert the odorous compounds to acceptable combustion products, including CO2 and SO2.

A very familiar and successful method for containing the odors of mercaptan (primarily C1 and C6) in laboratory reactions and distillations is to connect the condenser vent to two caustic scrubbers in series with an empty trap between the system and the scrubbers to catch the caustic in the event of reverse flow. Gas bubblers fitted with sintered-glass dip tubes and charged with aqueous sodium hydroxide (5 to 20%) are commonly used. Frequently, a low flow of inert gas, e.g., nitrogen, is used to maintain a steady flow through the bubbler.

Sodium hypochlorite solution (3-10%) destroys the odor by converting the mercaptan predominantly to the corresponding sulfonic acid (sodium salt). A wash bottle with hypochlorite solution is very convenient for quickly eliminating or controlling the odor from small spills or when cleaning up glass equipment. A bath of this solution is also very useful. WARNING! Do not add this solution to a large quantity of concentrated mercaptan, since a violent reaction may occur.

A 30-40% aqueous solution of lead acetate trihydrate serves acts as a detector for methyl and ethyl mercaptan as well as hydrogen sulfide. A wash bottle of lead acetate solution is used to moisten a piece of filter paper or paper towel which is then held close to (no contact) the suspected leak. With hydrogen sulfide the paper turns black and with the two mercaptans a yellow color is obtained (high sensitivity).

A large plastic bag should be kept in the hood, to store any odorous waste materials. The plastic bags can then be sealed in fiber drums for disposal. Glass bottles containing mercaptans and other odorous compounds can also be packed in fiber drums for odor-containment and properly marked for disposal.

A box of disposable gloves should be available, and the gloves should be discarded (in plastic bag in hood) after each use. Disposable aprons or lab coats are recommended, since clothing contacted with mercaptan is often difficult to deodorise.

Types of tubing found useful with mercaptans include: Teflon7, TFE, FEP, and PFA, Bev-a-line (IV or V), and 316 stainless steel. Bev-a-line tubing has a polyethylene liner cross-linked to an ethylene vinyl acetate shell, a useful temperature range of -60 C to +250 C, and is heat bondable. It is less expensive than TFE tubing and is convenient for flexible connections between glass and metal tubing lines. It is available from most laboratory supply houses. Copper and brass are unacceptable materials for handling mercaptans, because mercaptans are H2S are highly corrosive to copper and brass. Care should be taken not to use valves and gauges with brass components.

- · Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers.
- · In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- \cdot Lined metal can, Lined metal pail/drum
- · Plastic pail.

For low viscosity materials

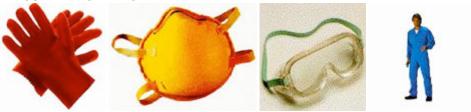
- \cdot Drums and jerricans must be of the non-removable head type.
- \cdot Where a can is to be used as an inner package, the can must have a screwed enclosure.

STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.

DO NOT store near acids, or oxidizing agents.

· No smoking, naked lights, heat or ignition sources.


Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA mg/m³	Notes
US - Oregon Permissible Exposure Limits (Z-3)	sodium 2-propanethiolate (Inert or Nuisance Dust: Total dust)	10	(d)
US OSHA Permissible Exposure Levels (PELs) - Table Z3	sodium 2-propanethiolate (Inert or Nuisance Dust: (d) Respirable fraction)	5	
US OSHA Permissible Exposure Levels (PELs) - Table Z3	sodium 2-propanethiolate (Inert or Nuisance Dust: (d) Total dust)	15	
US - Hawaii Air Contaminant Limits	sodium 2-propanethiolate (Particulates not other wise regulated - Total dust)	10	
US - Hawaii Air Contaminant Limits	sodium 2-propanethiolate (Particulates not other wise regulated - Respirable fraction)	5	
US - Oregon Permissible Exposure Limits (Z-3)	sodium 2-propanethiolate (Inert or Nuisance Dust: Respirable fraction)	5	(d)

US ACGIH Threshold Limit Values (TLV)	sodium 2-propanethiolate (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book
US - California Permissible Exposure Limits for Chemical Contaminants	sodium 2-propanethiolate (Particulates not otherwise regulated Respirable fraction)	5	(n)
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	sodium 2-propanethiolate (Particulates not otherwise regulated Respirable fraction)	5	
US - Michigan Exposure Limits for Air Contaminants	sodium 2-propanethiolate (Particulates not otherwise regulated, Respirable dust)	5	
Canada - Prince Edward Island Occupational Exposure Limits	sodium 2-propanethiolate (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants ENDOELTABLE	sodium 2-propanethiolate (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5	

PERSONAL PROTECTION

RESPIRATOR

BR2

Consult your EHS staff for recommendations

EYE

- · Chemical goggles.
- · Full face shield.

HANDS/FEET

■ Wear chemical protective gloves, eg. PVC.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- $\cdot \ \text{Contaminated gloves should be replaced}.$

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- · Overalls.
- · PVC Apron.

ENGINEERING CONTROLS

- · Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Corrosive.

Alkaline.

,			
State	DIVIDED SOLID	Molecular Weight	98.14
Melting Range (°F)	Not available	Viscosity	Not Applicable
Boiling Range (°F)	Decomposes	Solubility in water (g/L)	Reacts
Flash Point (°F)	Not available	pH (1% solution)	Not available
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable

Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Fine white crystalline powder; reacts with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.

STORAGE INCOMPATIBILITY

■ Segregate from alcohol, water.

Avoid strong acids.

· Avoid contact with copper, aluminium and their alloys.

Avoid reaction with oxidizing agents.

· NOTE: May develop pressure in containers; open carefully. Vent periodically.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

SODIUM 2-PROPANETHIOLATE

TOXICITY AND IRRITATION

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- No significant acute toxicological data identified in literature search.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Section 12 - ECOLOGICAL INFORMATION

This material and its container must be disposed of as hazardous waste.

Section 13 - DISPOSAL CONSIDERATIONS

US EPA Waste Number & Descriptions

A. General Product Information

Corrosivity characteristic: use EPA hazardous waste number D002 (waste code C)

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

DOT:

Symbols: None Hazard class or Division: 8 Identification Numbers: UN3263 PG: III Label Codes: 8 Special provisions: IB8, IP3,

T1. TP33

Packaging: Exceptions: 154 Packaging: Non-bulk: 213 Packaging: Exceptions: 154 Quantity limitations: 25 kg

Passenger aircraft/rail:

Quantity Limitations: Cargo 100 kg Vessel stowage: Location: A

aircraft only:

Vessel stowage: Other: 52

Hazardous materials descriptions and proper shipping names:

Corrosive solid, basic, organic, n.o.s.

Air Transport IATA:

ICAO/IATA Class: 8 ICAO/IATA Subrisk: None UN/ID Number: 3263 Packing Group: III

Special provisions: A3

Cargo Only

Packing Instructions: 823 Maximum Qty/Pack: 100 kg Passenger and Cargo Passenger and Cargo Packing Instructions: 822 Maximum Qty/Pack: 25 kg

Passenger and Cargo Limited Quantity Passenger and Cargo Limited Quantity

Packing Instructions: Y822 Maximum Qty/Pack: 5 kg

Shipping Name: CORROSIVE SOLID, BASIC, ORGANIC, N.O.S.

*(CONTAINS SODIUM 2-PROPANETHIOLATE)

Maritime Transport IMDG:

IMDG Class: 8 IMDG Subrisk: None UN Number: 3263 Packing Group: III

EMS Number: F-A, S-B Special provisions: 223 274

Limited Quantities: 5 kg

Shipping Name: CORROSIVE SOLID, BASIC, ORGANIC, N.O.S. (contains sodium 2-propanethiolate)

Section 15 - REGULATORY INFORMATION

REGULATIONS

sodium 2-propanethiolate (CAS: 20607-43-6) is found on the following regulatory lists;

"US - Hawaii Air Contaminant Limits", "US - Oregon Permissible Exposure Limits (Z-3)", "US OSHA Permissible Exposure Levels (PELs) - Table Z3"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation may produce health damage*.
- Cumulative effects may result following exposure*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:
- www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use,

frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Mar-18-2010 Print Date: Oct-20-2010