D-Cysteine

sc-255054

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

D-Cysteine

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

HEALTH AZARD INST BLITY

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY:

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C3-H7-N-O2-S, "alpha-amino-beta-thiopropionic acid", beta-mercaptoalanine, cys, cystein, thioserine, "half cystine", "2-amino-3-mercaptopropionic acid", "amino acid", "amino acid"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	1		
Toxicity:	2		
Body Contact:	2		Min/Nil=0 Low=1
Reactivity:	1		Moderate=2
Chronic:	2		High=3 Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

Irritating to eyes, respiratory system and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- The material may bind to the N-methyl-D-aspartate (NMDA) neuroreceptor. The NMDA receptor is an ionotropic glutamate receptor found on post-synaptic neurons and is a membrane channel that regulates the flow of sodium and calcium ions, flowing into the neuron, while potassium ions flow out. The NMDA receptor, therefore, tightly regulates "ion channel conductance". NMDA agonists (receptor activators), such as the glutamates, can, however, be highly toxic to the neuron. Excessive amounts of glutamate or its congeners, can be highly toxic to neurons and may contribute to neuron damage/death in stroke, epilepsy and neurodegenerative diseases. The decreased supply of oxygen (hypoxia) in stroke has been shown to result in excess glutamate release.

Overactivation by glutamates, other excitatory amino-acids (EAAs) such as the cysteines and homocysteines, and its congeners (excitotoxins), causes an excessive influx of calcium, into neurons, triggering nervous tissue damage. Glutamate is the major excitatory neurotransmitter in the central nervous system. When concentrations of glutamate and excitotoxins rise above a certain level, in the extracellular fluid, the neuron begins to fire abnormally. At higher concentrations, the cells of the neuron undergo a specialised process of delayed cell death known as excitotoxicity. Although the effects of excitotoxins are generally not dramatic, certain individuals may be especially sensitive and may develop severe symptoms as a result of cardiac irritability.

Excess calcium can activate pathways that are potentially harmful to the cell. For example, kinases, phospholipase A2, calpains, NO synthase, endonucleases and other enzymes can be activated. Phospholipase A2 stimulates arachidonic acid production while NO synthase produces nitric oxide. The production of both species ultimately results in free radical damage. Calpain activation may cause breakdown of the cytoskeleton and also contributes to free radical production and lipid peroxidation. Endonucleases damage neuronal DNA, as do free radicals. In addition, high internal calcium ion concentrations create large osmotic forces that drive water into the cell causing swelling and possibly, rupture. Rupture, in turn, causes the release of even more glutamate, inducing excitotoxicity in neighbouring cells. When brain cells are injured, they also release large amounts of glutamate from surrounding astrocytes and this glutamate can produce further damage in adjacent normal neuronal cells. This appears to be the case in strokes, seizures and brain trauma.

Activation of calcium-dependent enzymes is thought to produce changes in neuronal function that are long-lasting, persisting for weeks or months; it has been suggested that such activation is responsible for memory. Blockade (antagonism) of the receptor by several chemical agents produces amnesia in laboratory animals.

NMDA antagonists have been used as neuroprotective agents counteracting the effects of overactivation of the receptor; however such antagonists may also be harmful, at high doses, as the neuron also needs calcium for normal function. Very high doses may produce irreversible damage (including the psychomimetic effects caused by PCP -"angel dust"- abuse). Certain NMDA antagonists (notably those used to produce anaesthesis) induce arousal and even seizures. This class of drug has also produced a model psychosis indistinguishable from schizophrenia.

Large doses of calcium channel blocking agents may produce nausea, weakness, dizziness, drowsiness, confusion and slurred speech. Marked and prolonged hypotension and bradycardia may result from second or third degree atrioventricular block, decreased cardiac output and junctional rhythms; death may ensue.

Certain NMDA receptor antagonists may produce lightheadedness, ataxia, mood elevation and muscle incoordination. Side-effects of uptake of these antagonists (such as the isoxazole derivative, ibotenic acid, isolated from hallucinogenic mushrooms), by neurones, include dizziness, ataxia, euphoria, muscle twitches, and initial psychic stimulations followed by dream-filled sleep. More severe ingestions may produce visual disturbances, fever, confusion, myoclonus, mydriasis, seizures and coma. Residual headache may persist for several days. Ibotenic acid binds to NMDA neurotransmitter and inhibits (antagonises) its action. The congener muscimol (also isolated from mushrooms) which is structurally related to ibotenic acid and glutamic acid, by contrast, binds to another neuroreceptor, the so-called GABA receptor. This receptor, when activated inhibits the firing of some central neurones by causing influx of anions (e.g. chloride) into the cell. Muscimol is a GABA receptor agonist and produces a similar effect and almost identical clinical outcome to that of ibotenic acid. Systemic administration of ibotenic acid and muscimol to laboratory animals produces central inhibition of motor activity with little change to peripheral autonomic activity. Both compounds induce EEG changes in cats, rabbits and rats and thus within the central nervous system both compounds behave as false inhibitory neurotransmitters.

There are at least five different NMDA receptor sites that determine whether or not the channel opens. Two important ligands, glutamate and glycine (both amino-acids), are required to bind their respective NMDA sites for the channel to open. At low micromolar concentrations, polyamines, such as dopamine or cholinergic agents (binding to polyamine sites), increase the probability that glutamate and glycine will open the channel; high concentrations of polyamine, in contrast, produce the reverse effect. Two other regulatory ions, magnesium and zinc inhibit the action of amino- acids by binding to sites in the inner pore region of the NMDA channel.

EYE

■ This material can cause eye irritation and damage in some persons.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine

the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHAL FD

- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Not normally a hazard due to non-volatile nature of product.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

<\p>.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS				
NAME	CAS RN	%		

D-cysteine 921-01-7 100

Section 4 - FIRST AID MEASURES

SWALLOWED

· If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

FYF

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES			
Vapour Pressure (mmHG):	Negligible		
Upper Explosive Limit (%):	Not Available		
Specific Gravity (water=1):	Not available		
Lower Explosive Limit (%):	Not Available		

EXTINGUISHING MEDIA

- · Foam.
- · Dry chemical powder.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- · Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), sulfur oxides (SOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- · Control personal contact by using protective equipment.
- · Use dry clean up procedures and avoid generating dust.
- · Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- · CAUTION: Advise personnel in area.
- \cdot Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers.
- · In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- · Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.

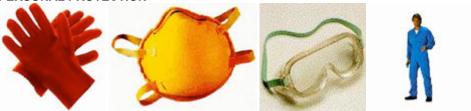
Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA mg/m³	Notes
US - Oregon Permissible Exposure Limits (Z-3)	D-cysteine (Inert or Nuisance Dust: Total dust)	10	(d)
US OSHA Permissible Exposure Levels (PELs) - Table Z3	D-cysteine (Inert or Nuisance Dust: (d) Respirable fraction)	5	
US OSHA Permissible Exposure Levels (PELs) - Table Z3	D-cysteine (Inert or Nuisance Dust: (d) Total dust)	15	
US - Hawaii Air Contaminant Limits	D-cysteine (Particulates not other wise regulated - Total dust)	10	
US - Hawaii Air Contaminant Limits	D-cysteine (Particulates not other wise regulated - Respirable fraction)	5	
US - Oregon Permissible Exposure Limits (Z-3)	D-cysteine (Inert or Nuisance Dust: Respirable fraction)	5	(d)
US ACGIH Threshold Limit Values (TLV)	D-cysteine (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book
US - California Permissible Exposure Limits for Chemical Contaminants	D-cysteine (Particulates not otherwise regulated Respirable fraction)	5	(n)
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	D-cysteine (Particulates not otherwise regulated Respirable fraction)	5	
US - Michigan Exposure Limits for Air Contaminants	D-cysteine (Particulates not otherwise regulated, Respirable dust)	5	

Canada - Prince Edward Island Occupational Exposure Limits D-cysteine (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)

10


5

See Appendix B current TLV/BEI Book

US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants D-cysteine (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)

ENDOELTABLE

PERSONAL PROTECTION

RESPIRATOR

Particulate

Consult your EHS staff for recommendations

EYE

- · Safety glasses with side shields.
- · Chemical goggles.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- · nitrile rubber
- · butyl rubber
- fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · Overalls.
- · P.V.C. apron.
- · Barrier cream.
- $\cdot \ \text{Skin cleansing cream}.$
- · Eye wash unit.

ENGINEERING CONTROLS

- · Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

State	Divided solid	Molecular Weight	121.17
Melting Range (°F)	437 (decomposes)	Viscosity	Not Applicable
Boiling Range (°F)	Not applicable.	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	Not Available	pH (1% solution)	Not available.
Decomposition Temp (°F)	437	pH (as supplied)	Not applicable

Autoignition Temp (°F)	Not Available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not Available	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Colourless crystalline powder; slightly soluble in water. The naturally occurring form is L(+) cysteine. Synthetic cysteine is DL form. Also available as hydrochloride.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

D-CYSTEINE

TOXICITY AND IRRITATION

D-CYSTEINE:

- unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances.
- Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
D-cysteine	LOW		LOW	HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- · Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

D-cysteine (CAS: 921-01-7) is found on the following regulatory lists;

"Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Nov-26-2009 Print Date: Nov-13-2010