L-Glutamic acid diethyl ester hydrochloride

sc-255241

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

L-Glutamic acid diethyl ester hydrochloride

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY:

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Non-selective agonist.

SYNONYMS

C9-H17-N-O4.HCI, C2H5O2CCH2CH2CH(NH2)CO2C2H5.HCI

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	1		
Toxicity:	2		
Body Contact:	0		Min/Nil=0 Low=1
Reactivity:	1		Moderate=2
Chronic:	0		High=3 Extreme=4

CANADIAN WHMIS SYMBOLS

None

EMERGENCY OVERVIEW RISK

POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS

SWALLOWED

- Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
- Accidental ingestion of the material may be damaging to the health of the individual.
- The material may bind to the N-methyl-D-aspartate (NMDA) neuroreceptor. The NMDA receptor is an ionotropic glutamate receptor found on post-synaptic neurons and is a membrane channel that regulates the flow of sodium and calcium ions, flowing into the neuron, while potassium ions flow out. The NMDA receptor, therefore, tightly regulates "ion channel conductance". NMDA agonists (receptor activators), such as the glutamates, can, however, be highly toxic to the neuron. Excessive amounts of glutamate or its congeners, can be highly toxic to neurons and may contribute to neuron damage/death in stroke, epilepsy and neurodegenerative diseases. The decreased supply of oxygen (hypoxia) in stroke has been shown to result in excess glutamate release.

Overactivation by glutamates, other excitatory amino-acids (EAAs) such as the cysteines and homocysteines, and its congeners (excitotoxins), causes an excessive influx of calcium, into neurons, triggering nervous tissue damage. Glutamate is the major excitatory neurotransmitter in the central nervous system. When concentrations of glutamate and excitotoxins rise above a certain level, in the extracellular fluid, the neuron begins to fire abnormally. At higher concentrations, the cells of the neuron undergo a specialised process of delayed cell death known as excitotoxicity. Although the effects of excitotoxins are generally not dramatic, certain individuals may be especially sensitive and may develop severe symptoms as a result of cardiac irritability.

Excess calcium can activate pathways that are potentially harmful to the cell. For example, kinases, phospholipase A2, calpains, NO synthase, endonucleases and other enzymes can be activated. Phospholipase A2 stimulates arachidonic acid production while NO synthase produces nitric oxide. The production of both species ultimately results in free radical damage. Calpain activation may cause breakdown of the cytoskeleton and also contributes to free radical production and lipid peroxidation. Endonucleases damage neuronal DNA, as do free radicals. In addition, high internal calcium ion concentrations create large osmotic forces that drive water into the cell causing swelling and possibly, rupture. Rupture, in turn, causes the release of even more glutamate, inducing excitotoxicity in neighbouring cells. When brain cells are injured, they also release large amounts of glutamate from surrounding astrocytes and this glutamate can produce further damage in adjacent normal neuronal cells. This appears to be the case in strokes, seizures and brain trauma.

Activation of calcium-dependent enzymes is thought to produce changes in neuronal function that are long-lasting, persisting for weeks or months; it has been suggested that such activation is responsible for memory. Blockade (antagonism) of the receptor by several chemical agents produces amnesia in laboratory animals.

NMDA antagonists have been used as neuroprotective agents counteracting the effects of overactivation of the receptor; however such antagonists may also be harmful, at high doses, as the neuron also needs calcium for normal function. Very high doses may produce irreversible damage (including the psychomimetic effects caused by PCP -"angel dust"- abuse). Certain NMDA antagonists (notably those used to produce anaesthesis) induce arousal and even seizures. This class of drug has also produced a model psychosis indistinguishable from schizophrenia.

Large doses of calcium channel blocking agents may produce nausea, weakness, dizziness, drowsiness, confusion and slurred speech. Marked and prolonged hypotension and bradycardia may result from second or third degree atrioventricular block, decreased cardiac output and junctional rhythms; death may ensue.

Certain NMDA receptor antagonists may produce lightheadedness, ataxia, mood elevation and muscle incoordination. Side-effects of uptake of these antagonists (such as the isoxazole derivative, ibotenic acid, isolated from hallucinogenic mushrooms), by neurones, include dizziness, ataxia, euphoria, muscle twitches, and initial psychic stimulations followed by dream-filled sleep. More severe ingestions may produce visual disturbances, fever, confusion, myoclonus, mydriasis, seizures and coma. Residual headache may persist for several days. Ibotenic acid binds to NMDA neurotransmitter and inhibits (antagonises) its action. The congener muscimol (also isolated from mushrooms) which is structurally related to ibotenic acid and glutamic acid, by contrast, binds to another neuroreceptor, the so-called GABA receptor. This receptor, when activated inhibits the firing of some central neurones by causing influx of anions (e.g. chloride) into the cell. Muscimol is a GABA receptor agonist and produces a similar effect and almost identical clinical outcome to that of ibotenic acid. Systemic administration of ibotenic acid and muscimol to laboratory animals produces central inhibition of motor activity with little change to peripheral autonomic activity. Both compounds induce EEG changes in cats, rabbits and rats and thus within the central nervous system both compounds behave as false inhibitory neurotransmitters.

There are at least five different NMDA receptor sites that determine whether or not the channel opens. Two important ligands, glutamate and glycine (both amino-acids), are required to bind their respective NMDA sites for the channel to open. At low micromolar concentrations, polyamines, such as dopamine or cholinergic agents (binding to polyamine sites), increase the probability that glutamate and glycine will open the channel; high concentrations of polyamine, in contrast, produce the reverse effect. Two other regulatory ions, magnesium and zinc inhibit the action of amino- acids by binding to sites in the inner pore region of the NMDA channel.

EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified using animal models); nevertheless exposure by all routes should be minimized as a matter of course.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
L-glutamic acid diethyl ester hydrochloride	1118-89-4	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

· If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. · Observe the patient carefully. · Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. · Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. · Seek medical advice.

FYF

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. · If pain persists or recurs seek medical attention. · Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

■ If skin or hair contact occurs: · Flush skin and hair with running water (and soap if available). · Seek medical attention in event of irritation.

INHALED

· If dust is inhaled, remove from contaminated area. · Encourage patient to blow nose to ensure clear passage of breathing. · If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES			
Vapour Pressure (mmHG):	Negligible		
Upper Explosive Limit (%):	Not available.		
Specific Gravity (water=1):	Not available		
Lower Explosive Limit (%):	Not available		

EXTINGUISHING MEDIA

- · Water spray or fog.
- · Foam.
- · Dry chemical powder.
- · BCF (where regulations permit).
- · Carbon dioxide.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- · Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- · Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible solid which burns but propagates flame with difficulty.
- · Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- · Build-up of electrostatic charge may be prevented by bonding and grounding.
- · Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- · Control personal contact by using protective equipment.
- · Use dry clean up procedures and avoid generating dust.
- · Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

- Moderate hazard.
- · CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- · Prevent, by any means available, spillage from entering drains or water courses.
- · Recover product wherever possible.
- · IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- · ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.
- · Use in a well-ventilated area.
- · Prevent concentration in hollows and sumps.
- · DO NOT enter confined spaces until atmosphere has been checked.
- · DO NOT allow material to contact humans, exposed food or food utensils.
- · Avoid contact with incompatible materials.
- · When handling, DO NOT eat, drink or smoke.
- · Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- · Work clothes should be laundered separately.
- · Launder contaminated clothing before re-use.
- · Use good occupational work practice.
- · Observe manufacturer's storing and handling recommendations.
- · Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers.
- · In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- · Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- · Keep containers securely sealed.
- · Store in a cool, dry, well-ventilated area.
- · Store away from incompatible materials and foodstuff containers.
- · Protect containers against physical damage and check regularly for leaks.
- · Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA mg/m³	Notes
US - Oregon Permissible Exposure Limits (Z-3)	L-glutamic acid diethyl ester hydrochloride (Inert or Nuisance Dust: Total dust)	10	(d)
US OSHA Permissible Exposure Levels (PELs) - Table Z3	L-glutamic acid diethyl ester hydrochloride (Inert or Nuisance Dust: (d) Respirable fraction)	5	
US OSHA Permissible Exposure Levels (PELs) - Table Z3	L-glutamic acid diethyl ester hydrochloride (Inert or Nuisance Dust: (d) Total dust)	15	
US - Hawaii Air Contaminant Limits	L-glutamic acid diethyl ester hydrochloride (Particulates not other wise regulated - Total dust)	10	
US - Hawaii Air Contaminant Limits	L-glutamic acid diethyl ester hydrochloride (Particulates not other wise regulated - Respirable fraction)	5	
US - Oregon Permissible Exposure Limits (Z-3)	L-glutamic acid diethyl ester hydrochloride (Inert or Nuisance Dust: Respirable fraction)	5	(d)
US ACGIH Threshold Limit Values (TLV)	L-glutamic acid diethyl ester hydrochloride (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book
US - California Permissible Exposure Limits for Chemical Contaminants	L-glutamic acid diethyl ester hydrochloride (Particulates not otherwise regulated Respirable fraction)	5	(n)
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	L-glutamic acid diethyl ester hydrochloride (Particulates not otherwise regulated Respirable fraction)	5	
US - Michigan Exposure Limits for Air Contaminants	L-glutamic acid diethyl ester hydrochloride (Particulates not otherwise regulated, Respirable dust)	5	
Canada - Prince Edward Island Occupational Exposure Limits	L-glutamic acid diethyl ester hydrochloride (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	L-glutamic acid diethyl ester hydrochloride (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5	

ENDOELTABLE

MATERIAL DATA

L-GLUTAMIC ACID DIETHYL ESTER HYDROCHLORIDE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- · Safety glasses with side shields
- · Chemical goggles.
- · Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- · frequency and duration of contact,
- chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- · nitrile rubber
- · butyl rubber
- fluorocaoutchouc
- $\cdot \text{ polyvinyl chloride} \\$

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · Overalls.
- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

RESPIRATOR

- · Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- · Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended.
- · Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- \cdot Use approved positive flow mask if significant quantities of dust becomes airborne.
- · Try to avoid creating dust conditions.

RESPIRATOR

•			
Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional

judgement. In conditions where no reasonable estimate of exposure can be

made, assume the exposure is in a concentration IDLH and use NIOSH-certified

full face pressure demand SCBA with a minimum service life of 30 minutes, or

a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be

NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- · Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- · If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- · Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	

Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Mixes with water.

Divided solid	Molecular Weight	239.70
226.4- 230	Viscosity	Not available
Not available	Solubility in water (g/L)	Miscible
Not available	pH (1% solution)	Not available
Not available	pH (as supplied)	Not applicable
Not available	Vapour Pressure (mmHG)	Negligible
Not available.	Specific Gravity (water=1)	Not available
Not available	Relative Vapor Density (air=1)	>1
Negligible	Evaporation Rate	Not applicable
	226.4- 230 Not available Not available Not available Not available Not available. Not available.	226.4- 230 Viscosity Not available Solubility in water (g/L) Not available pH (1% solution) Not available pH (as supplied) Not available Vapour Pressure (mmHG) Not available. Specific Gravity (water=1) Not available Relative Vapor Density (air=1)

APPEARANCE

White powder; mixes with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.
- · Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

L-GLUTAMIC ACID DIETHYL ESTER HYDROCHLORIDE

TOXICITY AND IRRITATION

L-GLUTAMIC ACID DIETHYL ESTER HYDROCHLORIDE:

■ No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

L-GLUTAMIC ACID DIETHYL ESTER HYDROCHLORIDE:

■ DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
L-glutamic acid diethyl ester hydrochloride	LOW		LOW	HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- · Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- · Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- · Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

REGULATIONS

L-glutamic acid diethyl ester hydrochloride (CAS: 1118-89-4) is found on the following regulatory lists;

"Canada Non-Domestic Substances List (NDSL)", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- * (limited evidence).

NΠ

Substance CAS Suggested codes L- glutamic acid diethyl ester 1118-89-4 hydrochloride

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jul-21-2009 Print Date:Oct-5-2010