

Ethylene glycol

sc-257515

Material Safety Data Sheet

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Ethylene glycol

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc.
2145 Delaware Avenue
Santa Cruz, California 95060
800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch
Within the US & Canada: 877-715-9305
Outside the US & Canada: +800 2436 2255
(1-800-CHEMCALL) or call +613 9573 3112

SYNOMYNS

CH₂-OHCH₂-OH, C₂-H₆-O₂, "ethylene glycol antifreeze", "1, 2-ethanediol", "UCAR 17", ethanediol, "1, 2-dihydroxyethane", "ethylene dihydrate", "glycol oglycol alcohol", Lustrol-9, M.E.G., Norkool, Tescol, "Dowtherm SR1", "Merck ethanediol AnalalR"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	1		
Toxicity:	2		
Body Contact:	2		
Reactivity:	1		
Chronic:	3		

Min/Nil=0
Low=1
Moderate=2
High=3
Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Harmful if swallowed.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- for ethylene glycol: Ingestion symptoms include respiratory failure, central nervous depression, cardiovascular collapse, pulmonary oedema, acute kidney failure, and even brain damage. Ingestion of 100 ml has caused death.
- Overexposure to non-ring alcohols causes nervous system symptoms. These include headache, muscle weakness and inco-ordination, giddiness, confusion, delirium and coma.
- The toxic effects of glycols (dihydric alcohols), following ingestion are similar to those of alcohol, with depression of the central nervous system (CNS), nausea, vomiting and degenerative changes in liver and kidney.

EYE

- There is some evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation.

Moderate inflammation may be expected with redness; conjunctivitis may occur with prolonged exposure.

SKIN

- Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
- There is some evidence to suggest that the material may cause mild but significant inflammation of the skin either following direct contact or after a delay of some time.

Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.

INHALED

- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of vapors, fumes or aerosols, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.
- Inhalation of vapors or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.
- Aliphatic alcohols with more than 3-carbons cause headache, dizziness, drowsiness, muscle weakness and delirium, central depression, coma, seizures and behavioral changes. Secondary respiratory depression and failure, as well as low blood pressure and irregular heart rhythms, may follow.

CHRONIC HEALTH EFFECTS

- Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is some evidence to provide a presumption that human exposure to the material may result in impaired fertility on the basis of: some evidence in animal studies of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects but which is not a secondary non-specific consequence of other toxic effects. There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects. Human volunteers exposed to ethylene glycol, 20 to 22 hours/day at mean daily concentrations ranging from 1.4 to 27 ppm for about 4 weeks complained of throat irritation, mild headache and low backache. Complaints became marked when the concentration in the exposure chamber was raised above 56 mg/m³ for part of the day. The most common complaint was irritation of the upper respiratory tract. Concentrations above 80 ppm were intolerable with a burning sensation along the trachea and a burning cough. Excessively exposed workers have reported drowsiness. Exposure to the material for prolonged periods may cause physical defects in the developing embryo (teratogenesis).

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
ethylene glycol	107-21-1	>99

Section 4 - FIRST AID MEASURES

SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. · Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

EYE

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN

■ For acute or short term repeated exposures to ethylene glycol:

· Early treatment of ingestion is important. Ensure emesis is satisfactory.

· Test and correct for metabolic acidosis and hypocalcemia.

Section 5 - FIRE FIGHTING MEASURES

Vapor Pressure (mmHg): 0.06 @ 20 C

Upper Explosive Limit (%): 15.3

Specific Gravity (water=1): 1.11 @ 25 C

Lower Explosive Limit (%): 3.2

EXTINGUISHING MEDIA

· Alcohol stable foam.
· Dry chemical powder.

FIRE FIGHTING

· Alert Emergency Responders and tell them location and nature of hazard.

· Wear full body protective clothing with breathing apparatus.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

· Combustible.
· Slight fire hazard when exposed to heat or flame.

Combustion products include: carbon dioxide (CO₂), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

1.NATURAL RUBBER 2.NEOPRENE

Respirator:

Type A-P Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

■ Slippery when spilt.
· Remove all ignition sources.
· Clean up all spills immediately.

MAJOR SPILLS

■ Slippery when spilt.
Moderate hazard.
· Clear area of personnel and move upwind.
· Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

· DO NOT allow clothing wet with material to stay in contact with skin.
· Avoid all personal contact, including inhalation.
· Wear protective clothing when risk of exposure occurs.

RECOMMENDED STORAGE METHODS

■ DO NOT use aluminum or galvanized containers.
· Metal can or drum
· Packing as recommended by manufacturer.

STORAGE REQUIREMENTS

· Material is hygroscopic, i.e. absorbs moisture from the air. Keep containers well sealed in storage.
· Store in original containers.

- Keep containers securely sealed.
- No smoking, naked lights or ignition sources.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m ³	STEL ppm	STEL mg/m ³	Peak ppm	Peak mg/m ³	TWA F/CC	Notes
Canada - British Columbia Occupational Exposure Limits	ethylene glycol (Ethylene glycol - Vapour)					50			
US - Minnesota Permissible Exposure Limits (PELs)	ethylene glycol (Ethylene glycol)					50	125		
US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)	ethylene glycol (ETHYLENE GLYCOL)		2						
Canada - Alberta Occupational Exposure Limits	ethylene glycol (Ethylene glycol)					100			
Canada - British Columbia Occupational Exposure Limits	ethylene glycol (Ethylene glycol - Aerosol)					100			
Canada - British Columbia Occupational Exposure Limits	ethylene glycol (Ethylene glycol - Particulate)	10		20					
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	ethylene glycol (Ethylene glycol)					50	125		
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	ethylene glycol (Ethylene glycol)					50	125		
US - California Permissible Exposure Limits for Chemical Contaminants	ethylene glycol (Ethylene glycol (vapor))	40	100			C			
US ACGIH Threshold Limit Values (TLV)	ethylene glycol (Ethylene glycol)					100			Value is for the aerosol. TLV Basis: upper respiratory tract & eye irritation
Canada - Saskatchewan Occupational Health and Safety Regulations -	ethylene glycol (Ethylene glycol, (as an aerosol))					100			

Contamination Limits						
US - Hawaii Air Contaminant Limits	ethylene glycol (Ethylene glycol, vapor)		50	125		
US - Alaska Limits for Air Contaminants	ethylene glycol (Ethylene glycol)		50	125		
Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances	ethylene glycol (Ethylene glycol - Particulate)	-	10	10	20	
Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances	ethylene glycol (Ethylene glycol - Vapour)	100	250	125	325	
US - Washington Permissible exposure limits of air contaminants	ethylene glycol (Ethylene glycol)		50			
US - Michigan Exposure Limits for Air Contaminants	ethylene glycol (Ethylene glycol)		50	125		
Canada - Prince Edward Island Occupational Exposure Limits	ethylene glycol (Ethylene glycol)			100		Value is for the aerosol. TLV Basis: upper respiratory tract & eye irritation
Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)	ethylene glycol (Ethylene glycol (vapour and mist))		50	127		
US - Oregon Permissible Exposure Limits (Z-1)	ethylene glycol (Ethylene glycol particulate)	-	10			Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits.
US - Oregon Permissible Exposure Limits (Z-1)	ethylene glycol (Ethylene glycol, Vapor)	100	260			Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits.
Canada - Nova Scotia Occupational Exposure Limits	ethylene glycol (Ethylene glycol)			100		Value is for the aerosol. TLV Basis: upper respiratory

tract & eye
irritation

ENDOELTABLE

PERSONAL PROTECTION

RESPIRATOR

Type A-P Filter of sufficient capacity
Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields.
- Chemical goggles.

HANDS/FEET

■ Wear chemical protective gloves, eg. PVC.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

ENGINEERING CONTROLS

■ Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid.

Mixes with water.

State	Liquid	Molecular Weight	62.08
Melting Range (°F)	1	Viscosity	Not Available
Boiling Range (°F)	388	Solubility in water (g/L)	Miscible
Flash Point (°F)	232(116 OC)	pH (1% solution)	Not available.
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	748	Vapor Pressure (mmHg)	0.06 @ 20 C
Upper Explosive Limit (%)	15.3	Specific Gravity (water=1)	1.11 @ 25 C
Lower Explosive Limit (%)	3.2	Relative Vapor Density (air=1)	2.14
Volatile Component (%vol)	Not available.	Evaporation Rate	< 0.01 BuAc=1
VOC(regulatory)	lb/gall	VOC(actual)	lb/gall
ethylene glycol			
log Kow (Prager 1995):			-1.36
log Kow (Sangster 1997):			-1.36

APPEARANCE

■ Material is hygroscopic, absorbs moisture from surrounding air. A colourless, sweet-tasting, slightly viscous liquid; of low volatility. Mixes with water, alcohol, glycerol, acetone, ketones, aldehydes and pyridine; slightly soluble in ether. May have >10 mg/kg bittering agent added in which case can be included in Schedule 5 of the SUSD&P but child proof closures are still required for packs of 5 litres or less.

log Kow -1.93- -1.36 The low octanol/water partition coefficient (log Kow -1.93 to -1.36) and measured bioconcentration factors in a few organisms indicate low capacity for bioaccumulation. Bioconcentration factors of 190 for the green algae (*Chlorella fusca*), up to 0.27 in specific tissues of the crayfish (*Procambarus sp.*), and 10 for the golden orfe (*Leuciscus idus melanotus*) confirm low bioaccumulation.

Material	Value
----------	-------

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY

- Avoid storage with strong acids, acid chlorides, acid anhydrides, oxidizing agents.

Ethylene glycol:

- reacts violently with oxidisers and oxidising acids, sulfuric acid, chlorosulfonic acid, chromyl chloride, perchloric acid
- forms explosive mixtures with sodium perchlorate
- is incompatible with strong acids, caustics, aliphatic amines, isocyanates, chlorosulfonic acid, oleum, potassium bichromate, phosphorus pentasulfide, sodium chlorite.
- Avoid strong acids, bases.
-

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

ethylene glycol

TOXICITY AND IRRITATION

ETHYLENE GLYCOL:

- unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY	IRRITATION
Oral (rat) LD50: 4700 mg/kg	Skin (rabbit): 555 mg(open)-Mild
Oral (human) LDLo: 398 mg/kg	Eye (rabbit): 100 mg/1h - Mild
Oral (child) TDLo: 5500 mg/kg	Eye (rabbit): 1440mg/6h-Moderate
Inhalation (human) TCLo: 10000 mg/m ³	Eye (rabbit): 500 mg/24h - Mild
Dermal (rabbit) LD50: 9530 mg/kg	Eye (rabbit): 12 mg/m ³ /3D
Inhalation (rat) LC50: 50100 mg/m ³ /8 hr	

■ For ethylene glycol:

Ethylene glycol is quickly and extensively absorbed through the gastrointestinal tract. Limited information suggests that it is also absorbed through the respiratory tract; dermal absorption is apparently slow. Following absorption, ethylene glycol is distributed throughout the body according to total body water. In most mammalian species, including humans, ethylene glycol is initially metabolised by alcohol dehydrogenase to form glycolaldehyde, which is rapidly converted to glycolic acid and glyoxal by aldehyde oxidase and aldehyde dehydrogenase. These metabolites are oxidised to glyoxylate; glyoxylate may be further metabolised to formic acid, oxalic acid, and glycine. Breakdown of both glycine and formic acid can generate CO₂, which is one of the major elimination products of ethylene glycol. In addition to exhaled CO₂, ethylene glycol is eliminated in the urine as both the parent compound and glycolic acid. Elimination of ethylene glycol from the plasma in both humans and laboratory animals is rapid after oral exposure; elimination half-lives are in the range of 1-4 hours in most species tested.

Respiratory Effects. Respiratory system involvement occurs 12-24 hours after ingestion of sufficient amounts of ethylene glycol and is considered to be part of a second stage in ethylene glycol poisoning. The symptoms include hyperventilation, shallow rapid breathing, and generalized pulmonary edema with calcium oxalate crystals occasionally present in the lung parenchyma. Respiratory system involvement appears to be dose-dependent and occurs concomitantly with cardiovascular changes. Pulmonary infiltrates and other changes compatible with adult respiratory distress syndrome (ARDS) may characterise the second stage of ethylene glycol poisoning. Pulmonary oedema can be secondary to cardiac failure, ARDS, or aspiration of gastric contents. Symptoms related to acidosis such as hyperpnea and tachypnea are frequently observed; however, major respiratory morbidities such as pulmonary edema and bronchopneumonia are relatively rare and usually only observed with extreme poisoning (e.g., in only 5 of 36 severely poisoned cases).

Cardiovascular Effects. Cardiovascular system involvement in humans occurs at the same time as respiratory system involvement, during the second phase of oral ethylene glycol poisoning, which is 12- 24 hours after acute exposure. The symptoms of cardiac involvement include tachycardia, ventricular gallop and cardiac enlargement. Ingestion of ethylene glycol may also cause hypertension or hypotension, which may progress to cardiogenic shock. Myocarditis has been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol. As in the case of respiratory effects, cardiovascular involvement occurs with ingestion of relatively high doses of ethylene glycol.

Nevertheless, circulatory disturbances are a rare occurrence, having been reported in only 8 of 36 severely poisoned cases. Therefore, it appears that acute exposure to high levels of ethylene glycol can cause serious cardiovascular effects in humans. The effects of a long-term, low-dose exposure are unknown.

Gastrointestinal Effects. Nausea, vomiting with or without blood, pyrosis, and abdominal cramping and pain are common early effects of acute ethylene glycol ingestion. Acute effects of ethylene glycol ingestion in one patient included intermittent diarrhea and abdominal pain, which were attributed to mild colonic ischaemia; severe abdominal pain secondary to colonic stricture and perforation developed 3 months

after ingestion, and histology of the resected colon showed birefringent crystals highly suggestive of oxalate deposition.

Musculoskeletal Effects. Reported musculoskeletal effects in cases of acute ethylene glycol poisoning have included diffuse muscle tenderness and myalgias associated with elevated serum creatinine phosphokinase levels, and myoclonic jerks and tetanic contractions associated with hypocalcaemia.

Hepatic Effects. Central hydropic or fatty degeneration, parenchymal necrosis, and calcium oxalate crystals in the liver have been observed at autopsy in cases of people who died following acute ingestion of ethylene glycol.

Renal Effects. Adverse renal effects after ethylene glycol ingestion in humans can be observed during the third stage of ethylene glycol toxicity 24-72 hours after acute exposure. The hallmark of renal toxicity is the presence of birefringent calcium oxalate monohydrate crystals deposited in renal tubules and their presence in urine after ingestion of relatively high amounts of ethylene glycol. Other signs of nephrotoxicity can include tubular cell degeneration and necrosis and tubular interstitial inflammation. If untreated, the degree of renal damage caused by high doses of ethylene glycol progresses and leads to haematuria, proteinuria, decreased renal function, oliguria, anuria, and ultimately renal failure. These changes in the kidney are linked to acute tubular necrosis but normal or near normal renal function can return with adequate supportive therapy.

Metabolic Effects. One of the major adverse effects following acute oral exposure of humans to ethylene glycol involves metabolic changes. These changes occur as early as 12 hours after ethylene glycol exposure. Ethylene glycol intoxication is accompanied by metabolic acidosis which is manifested by decreased pH and bicarbonate content of serum and other bodily fluids caused by accumulation of excess glycolic acid. Other characteristic metabolic effects of ethylene glycol poisoning are increased serum anion gap, increased osmolal gap, and hypocalcaemia. Serum anion gap is calculated from concentrations of sodium, chloride, and bicarbonate, is normally 12-16 mM, and is typically elevated after ethylene glycol ingestion due to increases in unmeasured metabolite anions (mainly glycolate).

Neurological Effects: Adverse neurological reactions are among the first symptoms to appear in humans after ethylene glycol ingestion. These early neurotoxic effects are also the only symptoms attributed to unmetabolised ethylene glycol. Together with metabolic changes, they occur during the period of 30 minutes to 12 hours after exposure and are considered to be part of the first stage in ethylene glycol intoxication. In cases of acute intoxication, in which a large amount of ethylene glycol is ingested over a very short time period, there is a progression of neurological manifestations which, if not treated, may lead to generalized seizures and coma. Ataxia, slurred speech, confusion, and somnolence are common during the initial phase of ethylene glycol intoxication as are irritation, restlessness, and disorientation. Cerebral edema and crystalline deposits of calcium oxalate in the walls of small blood vessels in the brain were found at autopsy in people who died after acute ethylene glycol ingestion.

Effects on cranial nerves appear late (generally 5-20 days post-ingestion), are relatively rare, and according to some investigators constitute a fourth, late cerebral phase in ethylene glycol intoxication. Clinical manifestations of the cranial neuropathy commonly involve lower motor neurons of the facial and bulbar nerves and are reversible over many months.

Reproductive Effects: Reproductive function after intermediate-duration oral exposure to ethylene glycol has been tested in three multi-generation studies (one in rats and two in mice) and several shorter studies (15-20 days in rats and mice). In these studies, effects on fertility, foetal viability, and male reproductive organs were observed in mice, while the only effect in rats was an increase in gestational duration.

Developmental Effects: The developmental toxicity of ethylene glycol has been assessed in several acute-duration studies using mice, rats, and rabbits. Available studies indicate that malformations, especially skeletal malformations occur in both mice and rats exposed during gestation; mice are apparently more sensitive to the developmental effects of ethylene glycol. Other evidence of embryotoxicity in laboratory animals exposed to ethylene glycol exposure includes reduction in foetal body weight.

Cancer: No studies were located regarding cancer effects in humans or animals after dermal exposure to ethylene glycol.

Genotoxic Effects: Studies in humans have not addressed the genotoxic effects of ethylene glycol. However, available in vivo and in vitro laboratory studies provide consistently negative genotoxicity results for ethylene glycol.

[Estimated Lethal Dose (human) 100 ml; RTECS quoted by Orica]

Substance is reproductive effector in rats (birth defects).

Mutagenic to rat cells.

CARCINOGEN

	US - Rhode Island Hazardous Substance List	IARC
VPVB_(VERY~	US - Maine Chemicals of High Concern List	Carcinogen CA Prop 65; IARC; NTP 11th ROC

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

Ingredient ethylene glycol	Persistence: Water/Soil LOW	Persistence: Air MED	Bioaccumulation LOW	Mobility HIGH
-------------------------------	--------------------------------	-------------------------	------------------------	------------------

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been

contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

ethylene glycol (CAS: 107-21-1) is found on the following regulatory lists:

"Canada - Alberta Occupational Exposure Limits","Canada - British Columbia Occupational Exposure Limits","Canada - Nova Scotia Occupational Exposure Limits","Canada - Prince Edward Island Occupational Exposure Limits","Canada - Prince Edward Island Occupational Exposure Limits - Carcinogens","Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)","Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits","Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances","Canada Domestic Substances List (DSL)","Canada Environmental Quality Guidelines (EQGs) Water: Aquatic life","Canada Ingredient Disclosure List (SOR/88-64)","Canada National Pollutant Release Inventory (NPRI)","Canada Priority Substances List (PSL1, PSL 2)","Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)","IMO IBC Code Chapter 17: Summary of minimum requirements","IMO MARPOL 73/78 (Annex II) - List of Noxious Liquid Substances Carried in Bulk","IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO","International Council of Chemical Associations (ICCA) - High Production Volume List","International Fragrance Association (IFRA) Survey: Transparency List","OECD Representative List of High Production Volume (HPV) Chemicals","US - Alaska Limits for Air Contaminants","US - California Air Toxics ""Hot Spots"" List (Assembly Bill 2588) Substances for which emissions must be quantified","US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List","US - California OEHHA/ARB - Chronic Reference Exposure Levels and Target Organs (CRELs)","US - California Permissible Exposure Limits for Chemical Contaminants","US - California Toxic Air Contaminant List Category II","US - Connecticut Hazardous Air Pollutants","US - Hawaii Air Contaminant Limits","US - Michigan Exposure Limits for Air Contaminants","US - Minnesota Hazardous Substance List","US - Minnesota Permissible Exposure Limits (PELs)","US - New Jersey Right to Know Hazardous Substances","US - Oregon Permissible Exposure Limits (Z-1)","US - Pennsylvania - Hazardous Substance List","US - Rhode Island Hazardous Substance List","US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants","US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants","US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants","US - Washington Permissible exposure limits of air contaminants","US ACGIH Threshold Limit Values (TLV)","US ACGIH Threshold Limit Values (TLV) - Carcinogens","US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)","US CAA (Clean Air Act) - HON Rule - Organic HAPs (Hazardous Air Pollutants)","US Clean Air Act - Hazardous Air Pollutants","US Department of Transportation (DOT) List of Hazardous Substances and Reportable Quantities - Hazardous Substances Other Than Radionuclides","US DOE Temporary Emergency Exposure Limits (TEELs)","US DOT Coast Guard Bulk Hazardous Materials - List of Flammable and Combustible Bulk Liquid Cargoes","US EPA High Production Volume Program Chemical List","US EPA Master Testing List - Index I Chemicals Listed","US EPCRA Section 313 Chemical List","US FDA Indirect Food Additives: Adhesives and Components of Coatings - Substances for Use Only as Components of Adhesives - Adhesives","US List of Lists - Consolidated List of Chemicals Subject to EPCRA, CERCLA and Section 112(r) of the Clean Air Act","US NFPA 30B Manufacture and Storage of Aerosol Products - Chemical Heat of Combustion","US Spacecraft Maximum Allowable Concentrations (SMACs) for Airborne Contaminants","US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

■ Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:
www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jul-7-2008

Print Date: Apr-8-2011