TGFβ1 siRNA (h2): sc-270322

The Power to Question

BACKGROUND

Transforming growth factor βs (TGF βs) were originally discovered due to their ability to promote anchorage-independent growth of rat NRK fibroblasts in the presence of TGF α . It is now realized that TGF βs mediate many cell-cell interactions that occur during embryonic development. Three TGF βs have been identified in mammals. TGF $\beta 1$, TGF $\beta 2$ and TGF $\beta 3$ are each synthesized as precursor proteins that are very similar in that each is cleaved to yield a 112 amino acid polypeptide that remains associated with the latent portion of the molecules. Biologically active TGF β requires dimerization of the monomers (usually homodimers) and release of the latent peptide portion. Overall, the mature region of the TGF $\beta 3$ protein has approximately 80% identity to the mature region of both TGF $\beta 1$ and TGF $\beta 2$. However, the NH $_2$ terminals or precursor regions of their molecules share only 27% sequence identity.

REFERENCES

- Todaro, G.J., et al. 1980. Transforming growth factors produced by certain human tumor cells: polypeptides that interact with epidermal growth factor receptors. Proc. Natl. Acad. Sci. USA 77: 5258-5262.
- 2. Anzano, M.A., et al. 1983. Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type α and type β transforming growth factors. Proc. Natl. Acad. Sci. USA 80: 6264-6268.
- 3. Derynck, R., et al. 1985. Human transforming growth factor β complementary DNA sequence and expression in normal and transformed cells. Nature 316: 701-705.
- 4. de Martin, R., et al. 1987. Complementary DNA for human glioblastomaderived T cell suppressor factor, a novel member of the transforming growth factor-β gene family. EMBO J. 6: 3673-3677.

CHROMOSOMAL LOCATION

Genetic locus: TGFB1 (human) mapping to 19q13.2.

PRODUCT

TGF β 1 siRNA (h2) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see TGF β 1 shRNA Plasmid (h2): sc-270322-SH and TGF β 1 shRNA (h2) Lentiviral Particles: sc-270322-V as alternate gene silencing products.

For independent verification of TGF β 1 (h2) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-270322A, sc-270322B and sc-270322C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

TGF β 1 siRNA (h2) is recommended for the inhibition of TGF β 1 expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

TGFβ1 (3C11): sc-130348 is recommended as a control antibody for monitoring of TGFβ1 gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor TGF β 1 gene expression knockdown using RT-PCR Primer: TGF β 1 (h2)-PR: sc-270322-PR (20 μ I, 583 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

- Lin, H.Y., et al. 2018. Heteronemin induces anti-proliferation in cholangiocarcinoma cells via inhibiting TGF-β pathway. Mar. Drugs 16: 489.
- 2. Park, H.H., et al. 2020. TGF- β secreted by human umbilical cord blood-derived mesenchymal stem cells ameliorates atopic dermatitis by inhibiting secretion of TNF- α and IgE. Stem Cells 38: 904-916.
- 3. García-Cuellar, C.M., et al. 2021. Particulate matter (PM_{10}) promotes cell invasion through epithelial-mesenchymal transition (EMT) by TGF- β activation in A549 lung cells. Int. J. Mol. Sci. 22: 12632.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com