SANTA CRUZ BIOTECHNOLOGY, INC.

NOS2 siRNA (C. porcellus): sc-270537

BACKGROUND

Nitric oxide (NO) has a broad range of biological activities and has been implicated in signaling pathways in phylogenetically diverse species. Nitric oxide synthases (NOSs), the enzymes responsible for synthesis of NO, contain an N-terminal oxygenase domain and a C-terminal reductase domain. NOS activity requires homodimerization as well as three cosubstrates (L-arginine, NADPH and O_2) and five cofactors or prosthetic groups (FAD, FMN, calmodulin, tetrahydrobiopterin and heme). Several distinct NOS isoforms have been described and been shown to represent the products of three distinct genes. These include two constitutive Ca²⁺/CaM-dependent forms of NOS, including NOS1 (also designated ncNOS) whose activity was first identified in neurons, and NOS3 (also designated ecNOS), first identified in endothelial cells. The inducible form of NOS, NOS2 (also designated iNOS), is Ca²⁺-independent and is expressed in a broad range of cell types.

REFERENCES

- Nathan, C. and Xie, Q.W. 1994. Nitric oxide synthases: roles, tolls, and controls. Cell 78: 915-918.
- 2. Schmidt, H.H.H.W. and Walter, U. 1994. NO at work. Cell 78: 919-925.
- Marietta, M.A. 1994. Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78: 927-930.
- Heiss, L.N., Lancaster, J.R., Jr., Corbett, J.A. and Goldman, W.E. 1994. Epithelial autotoxicity of nitric oxide: role in the respiratory cytopathology of pertussis. Proc. Natl. Acad. Sci. USA 91: 267-270.
- Farias-Eisner, R., Sherman, M.P., Aeberhard, E. and Chaudhuri, G. 1994. Nitric oxide is an important mediator for tumoricidal activity *in vivo*. Proc. Natl. Acad. Sci. USA 91: 9407-9411.
- Kamijo, R., Harada, H., Matsuyama, T., Bosland, M., Gerecitano, J., Shapiro, D., Le, J., Im, K.S., Kimura, T., Green, S., Mak, T.W., Taniguchi, T. and Vilcek, J. 1994. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263: 1612-1615.
- Bukrinsky, M.E., Nottet, H.S., Schmidtmayerova, N., Dubrovsky, L., Flanagan, C.R., Mullins, M.E., Lipton, S.A. and Gendelman, H.E. 1995. Regulation of nitric oxide synthase activity in human immuno-deficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease. J. Exp. Med. 181: 735-745.

PRODUCT

NOS2 siRNA (C. porcellus) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see NOS2 shRNA Plasmid (C. porcellus): sc-270537-SH and NOS2 shRNA (C. porcellus) Lentiviral Particles: sc-270537-V as alternate gene silencing products.

For independent verification of NOS2 (C. porcellus) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-270537A, sc-270537B and sc-270537C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

NOS2 siRNA (C. porcellus) is recommended for the inhibition of NOS2 expression in *C. porcellus* cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor NOS2 gene expression knockdown using RT-PCR Primer: NOS2 (C. porcellus)-PR: sc-270537-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.