Ethylene glycol monohexyl ether

sc-280715

Material Safety Data Sheet

The Power to Quantion

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Ethylene glycol monohexyl ether

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C8-H18-O2, "ethanol, 2-(hexyloxy)-", "cellosolve, N-hexyl-", "ethylene glycol n-hexyl ether", "glycol monohexyl ether", "hexyl cellosolve", "N-hexyl cellosolve", 2-(hexyloxy)ethanol, "nonionic surfactant"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	1		
Toxicity:	2		
Body Contact:	3		Min/Nil=0 Low=1
Reactivity:	2		Moderate=2
Chronic:	2		High=3 Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

May form explosive peroxides.
Causes burns.
Risk of serious damage to eyes.
Harmful in contact with skin and if swallowed.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.

EYE

■ The material can produce chemical burns to the eye following direct contact.

Vapors or mists may be extremely irritating.

- If applied to the eyes, this material causes severe eye damage.
- Ethylene glycol monohexyl ether vapour may be moderately to severely irritating and may produce discomfort, excessive blinking and tear production, with excessive redness and swelling of the conjunctiva.

 Corneal injury may occur.

SKIN

- Skin contact with the material may be harmful; systemic effects may resultfollowing absorption.
- The material can produce chemical burns following direct contactwith the skin.
- Sustained contact of many hours with ethylene glycol monohexyl ether may produce severe redness, and swelling with the development of fissures and possibly bleeding into the inflamed area.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects.

Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- If inhaled, this material can irritate the throat andlungs of some persons.
- Inhalation of vapours may cause drowsiness and dizziness.

This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

- Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.
- \blacksquare Inhalation hazard is increased at higher temperatures.

CHRONIC HEALTH EFFECTS

■ Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Animals receiving repeated doses of ethylene glycol monohexyl ether developed haemolytic anaemia and secondary injury to the kidney and liver.

A short-term repeated (9 day) and subsequent subchronic (14 weeks) inhalation study with the vapour showed only non-specific signs of toxicity at near saturated concentrations. Signs included body-weight decreases and liver and kidney weight changes. There was no haematological, biochemical, or histological evidence for specific organ toxicity. No effects were observed at concentrations below 40 ppm.

The material did not produce evidence of mutagenicity in any Ames test, a forward gene mutation test in cultured cells, and an in vitro test for the detection of chromatid exchanges. Clastogenic activity was not demonstrated in an in vitro cytogenetic test. Exposure of pregnant rats and rabbits to the vapour at 21, 41, and 79 ppm during organogenesis, (6 hours daily) resulted in minimal toxicity (including decreased body weight gain) in rabbits (79 ppm) and rats (79 ppm and 41 ppm). There was, however, no evidence for either embryofoetotoxicity or teratogenicity at any exposure concentration.

Ethylene glycol esters and their ethers cause wasting of the testicles, reproductive changes, infertility and changes to kidney function. Shorter chain compounds are more dangerous.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
ethylene glycol monohexyl ether	112-25-4	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

· For advice, contact a Poisons Information Center or a doctor at once. · Urgent hospital treatment is likely to be needed.

EYE

■ If this product comes in contact with the eyes: · Immediately hold eyelids apart and flush the eye continuously with running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin or hair contact occurs: · Immediately flush body and clothes with large amounts of water, using safety shower if available. · Quickly remove all contaminated clothing, including footwear.

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN

- Followed acute or short term repeated exposures to ethylene glycol monoalkyl ethers and their acetates:
- · Hepatic metabolism produces ethylene glycol as a metabolite.
- · Clinical presentation, following severe intoxication, resembles that of ethylene glycol exposures.

For acute or short term repeated exposures to ethylene glycol:

- · Early treatment of ingestion is important. Ensure emesis is satisfactory.
- · Test and correct for metabolic acidosis and hypocalcemia.

Due to the irritating nature of the material, any aspiration during vomiting could result in severe lung injury. Therefore emesis should not be induced mechanically or pharmacologically. However, the acute peroral systemic toxicity of the material indicates that evacuation of the stomach contents should be undertaken at the earliest possible time by means carrying the least likelihood of aspiration (e.g. the use of gastric lavage with endotracheal intubation) [Union Carbide, Canada MSDS]

Section 5 - FIRE FIGHTING MEASURES					
Vapor Pressure (mmHg):	0.05 at 20 C				
Upper Explosive Limit (%):	9 (est)				
Specific Gravity (water=1):	0.888				
Lower Explosive Limit (%):	1.4 (calc.)				

EXTINGUISHING MEDIA

- · Alcohol stable foam.
- · Dry chemical powder.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear full body protective clothing with breathing apparatus.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- · Combustible.
- · Slight fire hazard when exposed to heat or flame.

Combustion products include: carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Safety Glasses.

Full face- shield.

Gloves:

Respirator:

Type A Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.

MAJOR SPILLS

- Moderate hazard.
- · Clear area of personnel and move upwind.
- \cdot Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

· DO NOT allow clothing wet with material to stay in contact with skin.

The tendency of many ethers to form explosive peroxides is well documented. Ethers lacking non-methyl hydrogen atoms adjacent to the ether link are thought to be relatively safe

· DO NOT concentrate by evaporation, or evaporate extracts to dryness, as residues may contain explosive peroxides with DETONATION potential.

- · Any static discharge is also a source of hazard.
- \cdot Before any distillation process remove trace peroxides by shaking with excess 5% aqueous ferrous sulfate solution or by percolation through a column of activated alumina.
- Distillation results in uninhibited ether distillate with considerably increased hazard because of risk of peroxide formation on storage.
- · Add inhibitor to any distillate as required.
- · When solvents have been freed from peroxides by percolation through columns of activated alumina, the absorbed peroxides must promptly be desorbed by treatment with polar solvents such as methanol or water, which should then be disposed of safely.

The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example.

Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised.

- · A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date.
- · The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date.
- · Unopened containers received from the supplier should be safe to store for 18 months.
- Opened containers should not be stored for more than 12 months.
- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.

RECOMMENDED STORAGE METHODS

- · Metal can or drum
- · Packing as recommended by manufacturer.

STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.
- · No smoking, naked lights or ignition sources.
- · Store in a cool, dry, well-ventilated area.
- · Store away from incompatible materials and foodstuff containers.
- · Protect containers against physical damage and check regularly for leaks.
- · Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

• ethylene glycol monohexyl ether: CAS:112-25-4

PERSONAL PROTECTION

RESPIRATOR

•Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

EYE

- $\cdot \ \text{Chemical goggles}.$
- · Full face shield.

HANDS/FEET

- Wear chemical protective gloves, eg. PVC.
- · When handling corrosive liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

· Overalls.

- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

ENGINEERING CONTROLS

■ Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid

Mixes with water.

State	Liquid	Molecular Weight	146.26
Melting Range (°F)	-49	Viscosity	Not Available
Boiling Range (°F)	406	Solubility in water (g/L)	Miscible
Flash Point (°F)	179(Tag cc)	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapor Pressure (mmHg)	0.05 at 20 C
Upper Explosive Limit (%)	9 (est)	Specific Gravity (water=1)	0.888
Lower Explosive Limit (%)	1.4 (calc.)	Relative Vapor Density (air=1)	5
Volatile Component (%vol)	100	Evaporation Rate	<0.01 BuAc=1

APPEARANCE

Clear, colourless liquid with mild alcohol-like odour; mixes with water (10 g/l at 20 C).

Glycol ether acetates do not hydrolyse rapidly into their corresponding glycol ethers in water under environmental conditions. The LC50 or EC50 values for EGHE are lower than those for EGPE and EGBE (which have shorter chain lengths and lower log Kow values). Overall, the LC50 values for the glycol ethers in aquatic species range from 94 to > 5000 mg/L. For EGHE, the 96-hour LC50 for Brachydanio rerio (zebra fish) is between 94 and mg/L, the 48-hour EC50 for Daphnia magna was 145 mg/L and the 72-hour EC50 values for biomass and growth rate of algae (Scenedesmus subspicatus) were 98 and 198 mg/L, respectively. LC50/EC50 values for EGPE and EGBE in aquatic species are 835 mg/l or greater. Ether groups are generally stable to hydrolysis in water under neutral conditions and ambient temperatures. OECD guideline studies indicate ready biodegradability for several glycol ethers although higher molecular weight species seem to biodegrade at a slower rate. No glycol ethers that have been tested demonstrate marked resistance to biodegradative processes. Upon release to the atmosphere by evaporation, high boiling glycol ethers are estimated to undergo photodegradation (atmospheric half lives = 2.4-2.5 hr). When released to water, glycol ethers undergo biodegradation (typically 47-92% after 8-21 days) and have a low potential for bioaccumulation (log Kow ranges from -1.73 to +0.51).

Material Value

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- \cdot Presence of incompatible materials.
- Product is considered stable.

STORAGE INCOMPATIBILITY

- · Glycol ethers may form peroxides under certain conditions; the potential for peroxide formation is enhanced when these substances are used in processes such as distillation where they are concentrated or even evaporated to near-dryness or dryness; storage under a nitrogen atmosphere is recommended to minimise the possible formation of highly reactive peroxides
- · Nitrogen blanketing is recommended if transported in containers at temperatures within 15 deg C of the flash-point and at or above the flash-point large containers may first need to be purged and inerted with nitrogen prior to loading
- In the presence of strong bases or the salts of strong bases, at elevated temperatures, the potential exists for runaway reactions.
- Contact with aluminium should be avoided; release of hydrogen gas may result- glycol ethers will corrode scratched aluminium surfaces.
- · May discolour in mild steel/ copper; lined containers, glass or stainless steel is preferred
- Glycols and their ethers undergo violent decomposition in contact with 70% perchloric acid. This seems likely to involve formation of the glycol perchlorate esters (after scission of ethers) which are explosive, those of ethylene glycol and 3-chloro-1,2-propanediol being more powerful than glyceryl nitrate, and the former so sensitive that it explodes on addition of water. Investigation of the hazards associated with use of 2-butoxyethanol for alloy electropolishing showed that mixtures with 50-95% of acid at 20 deg C, or 40-90% at 75 C, were explosive and initiable by sparks. Sparking caused mixtures with 40-50% of acid to become explosive, but 30% solutions appeared safe under static conditions of temperature and concentration.
- Avoid strong acids, bases.

Avoid reaction with oxidizing agents.

Do not distill to dryness. Avoid excessive temperatures or prolonged reflux

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

TOXICITY AND IRRITATION

ETHYLENE GLYCOL MONOHEXYL ETHER:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Oral (rat) LD50: 830 mg/kg Skin (rabbit): 500 mg (open)-Mild

Oral (rat) LD50: 1110 mg/kg * Eye (rabbit): 1 mg - Mild

Dermal (rabbit) LD50: 810 mg/kg * Union Carbide

Dermal (rabbit) LD50: 773 mg/kg *

Intraperitoneal (Mouse) LD50: 737 mg/kg

■ The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

For ethylene glycol monoalkyl ethers and their acetates (EGMAEs):

Typical members of this category are ethylene glycol propylene ether (EGPE), ethylene glycol butyl ether (EGBE) and ethylene glycol hexyl ether (EGHE) and their acetates.

EGMAEs are substrates for alcohol dehydrogenase isozyme ADH-3, which catalyzes the conversion of their terminal alcohols to aldehydes (which are transient metabolites). Further, rapid conversion of the aldehydes by aldehyde dehydrogenase produces alkoxyacetic acids, which are the predominant urinary metabolites of mono substituted glycol ethers.

Acute Toxicity: Oral LD50 values in rats for all category members range from 739 (EGHE) to 3089 mg/kg bw (EGPE), with values increasing with decreasing molecular weight. Four to six hour acute inhalation toxicity studies were conducted for these chemicals in rats at the highest vapour concentrations practically achievable. Values range from LC0 > 85 ppm (508 mg/m3) for EGHE, LC50 > 400ppm (2620 mg/m3) for EGBEA to LC50 > 2132 ppm (9061 mg/m3) for EGPE. No lethality was observed for any of these materials under these conditions. Dermal LD50 values in rabbits range from 435 mg/kg bw (EGBE) to 1500 mg/kg bw (EGBEA). Overall these category members can be considered to be of low to moderate acute toxicity. All category members cause reversible irritation to skin and eyes, with EGBEA less irritating and EGHE more irritating than the other category members. EGPE and EGBE are not sensitisers in experimental animals or humans. Signs of acute toxicity in rats, mice and rabbits are consistent with haemolysis (with the exception of EGHE) and non-specific CNS depression typical of organic solvents in general. Alkoxyacetic acid metabolites, propoxyacetic acid (PAA) and butoxyacetic acid (BAA), are responsible for the red blood cell hemolysis. Signs of toxicity in humans deliberately ingesting cleaning fluids containing 9-22% EGBE are similar to those of rats, with the exception of haemolysis. Although decreased blood haemoglobin and/or haemoglobinuria were observed in some of the human cases, it is not clear if this was due to haemolysis or haemodilution as a result of administration of large volumes of fluid. Red blood cells of humans are many-fold more resistant to toxicity from EGPE and EGBE in vitro than those of rats.

Repeat dose toxicity: The fact that the NOAEL for repeated dose toxicity of EGBE is less than that of EGPE is consistent with red blood cells being more sensitive to EGBE than EGPE. Blood from mice, rats, hamsters, rabbits and baboons were sensitive to the effects of BAA in vitro and displayed similar responses, which included erythrocyte swelling (increased haematocrit and mean corpuscular hemoglobin), followed by hemolysis. Blood from humans, pigs, dogs, cats, and guinea pigs was less sensitive to haemolysis by BAA in vitro.

Mutagenicity: In the absence and presence of metabolic activation, EGBE tested negative for mutagenicity in Ames tests conducted in S. typhimurium strains TA97, TA98, TA100, TA1535 and TA1537 and EGHE tested negative in strains TA98, TA100, TA1535, TA1537 and TA1538. In vitro cytogenicity and sister chromatid exchange assays with EGBE and EGHE in Chinese Hamster Ovary Cells with and without metabolic activation and in vivo micronucleus tests with EGBE in rats and mice were negative, indicating that these glycol ethers are not genotoxic.

Carcinogenicity: In a 2-year inhalation chronic toxicity and carcinogenicity study with EGBE in rats and mice a significant increase in the incidence of liver haemangiosarcomas was seen in male mice and forestomach tumours in female mice. It was decided that based on the mode of action data available, there was no significant hazard for human carcinogenicity

Reproductive and developmental toxicity. The results of reproductive and developmental toxicity studies indicate that the glycol ethers in this category are not selectively toxic to the reproductive system or developing fetus, developmental toxicity is secondary to maternal toxicity. The repeated dose toxicity studies in which reproductive organs were examined indicate that the members of this category are not associated with toxicity to reproductive organs (including the testes).

Results of the developmental toxicity studies conducted via inhalation exposures during gestation periods on EGPE (rabbits -125, 250, 500 ppm or 531, 1062, or 2125 mg/m3 and rats - 100, 200, 300, 400 ppm or 425, 850, 1275, or 1700 mg/m3), EGBE (rat and rabbit - 25, 50, 100, 200 ppm or 121, 241, 483, or 966 mg/m3), and EGHE (rat and rabbit - 20.8, 41.4, 79.2 ppm or 124, 248, or 474 mg/m3) indicate that the members of the category are not teratogenic.

The NOAELs for developmental toxicity are greater than 500 ppm or 2125 mg/m3 (rabbit-EGPE), 100 ppm or 425 mg/m3 (rat-EGPE), 50 ppm or 241 mg/m3 (rat EGBE) and 100 ppm or 483 mg/m3 (rabbit EGBE) and greater than 79.2 ppm or 474 mg/m3 (rat and rabbit-EGHE).

CARCINOGEN

VPVB_(VERY~

US - Maine Chemicals of High Carcinogen

CA Prop 65; IARC;

NTP 11th ROC

Section 12 - ECOLOGICAL INFORMATION

No data

GESAMP/EHS COMPOSITE LIST - GESAMP Hazard Profiles

Legend: EHS=EHS Number (EHS=GESAMP Working Group on the Evaluation of the Hazards of Harmful Substances Carried by Ships) NRT=Net Register Tonnage, A1a=Bioaccumulation log Pow, A1b=Bioaccumulation BCF, A1=Bioaccumulation, A2=Biodegradation, B1=Acuteaquatic toxicity LC/ECIC50 (mg/l), B2=Chronic aquatic toxicity NOEC (mg/l), C1=Acute mammalian oral toxicity LD50 (mg/kg), C2=Acutemammalian dermal toxicity LD50 (mg/kg), C3=Acute mammalian inhalation toxicity LC50 (mg/kg), D1=Skin irritation & corrosion, D2=Eye irritation& corrosion, D3=Long-term health effects, E1=Tainting, E2=Physical effects on wildlife & benthic habitats, E3=Interference with coastal amenities, For column A2: R=Readily biodegradable, NR=Not readily biodegradable. For column D3: C=Carcinogen, M=Mutagenic, R=Reprotoxic, S=Sensitising, A=Aspiration hazard, T=Target organ systemic toxicity, L=Lunginjury, N=Neurotoxic, I=Immunotoxic. For column E1: NT=Not tainting (tested), T=Tainting test positive. For column E2: Fp=Persistent floater, F=Floater, S=Sinking substances. The numerical scales start from 0 (no hazard), while higher numbers reflect increasing hazard. (GESAMP/EHS Composite List of Hazard Profiles - Hazard evaluation of substances transported by ships)

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- · Reuse
- Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible or consult manufacturer for recycling options.
- · Consult Waste Management Authority for disposal.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

ethylene glycol monohexyl ether (CAS: 112-25-4) is found on the following regulatory lists;

"Canada National Pollutant Release Inventory (NPRI)", "International Council of Chemical Associations (ICCA) - High Production Volume List", "US EPA High Production Volume Program Chemical List", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation may produce health damage*.
- Cumulative effects may result following exposure*.
- May possibly affect fertility*.
- Vapours potentially cause drowsiness and dizziness*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

■ Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the

reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Oct-27-2008 Print Date:Sep-2-2011