Sorbitane Trioleate

sc-281154

The Power to Question

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Sorbitane Trioleate

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA FLAME BILITY HEALTH AZARD INST BLITY

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY:

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Nonionic surfactant. HLB 1.8

SYNONYMS

C60-H108-O8, "sorbitan, tri(9-octadecenoate), (Z)-", "sorbitan, tri-9-octadecanoate, (Z, Z, Z)-", "sorbitane trioleate", "Arlacel 85", "Crill 5", "Emasol 430", "Emsorb 2503", "Glycomul TO", "lonet S-85", "Liposorb TO", "Nissan Nonion OP 85-R", "Protachem STO", "Rheodol SP-030", TE-33, "Span 85 HLB-value 1.8"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	1		
Toxicity:	2		
Body Contact:	2		Min/Nil=0 Low=1
Reactivity:	1		Moderate=2
Chronic:	0		High=3 Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

risk

Irritating to eyes and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- Overexposure is unlikely in this form.
- Nonionic surfactants may produce localized irritation of the oral or gastrointestinal lining and induce vomiting and mild diarrhea.

FYF

- Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals. Prolonged eye contact may cause inflammation characterized by a temporary redness of the conjunctiva (similar to windburn).
- Non-ionic surfactants can cause numbing of the cornea, which masks discomfort normally caused by other agents and leads to corneal injury. Irritation varies depending on the duration of contact, the nature and concentration of the surfactant.

SKIN

- The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

■ The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified using animal models); nevertheless exposure by all routes should be minimized as a matter of course.

Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS					
NAME		CAS RN	%		
sorbitan trioleate		26266-58-0	>98		

Section 4 - FIRST AID MEASURES

SWALLOWED

· If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

EYE

■ If this product comes in contact with the eyes: · Wash out immediately with fresh running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Other measures are usually unnecessary.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES					
Vapour Pressure (mmHG):	Not available				
Upper Explosive Limit (%):	Not available				
Specific Gravity (water=1):	0.956				

EXTINGUISHING MEDIA

Lower Explosive Limit (%):

- · Water spray or fog.
- · Foam.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear full body protective clothing with breathing apparatus.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

Not available

- · Combustible.
- · Slight fire hazard when exposed to heat or flame.

Combustion products include: carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Safety Glasses.

Chemical goggles.

Gloves:

Respirator:

Type A Filter of sufficient capacity

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Slippery when spilt.
- Remove all ignition sources.
- · Clean up all spills immediately.

MAJOR SPILLS

■ Slippery when spilt.

Moderate hazard.

- \cdot Clear area of personnel and move upwind.
- \cdot Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.
- \cdot DO NOT allow clothing wet with material to stay in contact with skin.

RECOMMENDED STORAGE METHODS

- Glass container.
- · Metal can or drum
- · Packing as recommended by manufacturer.

STORAGE REQUIREMENTS

- Store in original containers.
- · Keep containers securely sealed.
- · No smoking, naked lights or ignition sources.
- · Store in a cool, dry, well-ventilated area.
- \cdot Store away from incompatible materials and foodstuff containers.
- · Protect containers against physical damage and check regularly for leaks.
- · Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

• sorbitan trioleate: CAS:26266-58-0

PERSONAL PROTECTION

RESPIRATOR

Type A Filter of sufficient capacity

EYE

- · Safety glasses with side shields.
- · Chemical goggles.

HANDS/FEET

■ Wear chemical protective gloves, eg. PVC.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- · Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- · Overalls.
- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

ENGINEERING CONTROLS

■ General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. <\n>

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid.

Mixes with water.

State	Liquid	Molecular Weight	Not available
Melting Range (°F)	Not available	Viscosity	Not Available
Boiling Range (°F)	Not available	Solubility in water (g/L)	Miscible
Flash Point (°F)	>230	pH (1% solution)	Not available
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Not available
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	0.956
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	>1

Volatile Component (%vol) Not available Evaporation Rate Not available

APPEARANCE

Viscous yellow liquid; mixes with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- · Product is considered stable.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

SORBITAN TRIOLEATE

TOXICITY AND IRRITATION

SORBITAN TRIOLEATE:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Skin (rabbit): 1.25 mg Moderate

■ For Group D aliphatic esters:(sorbitan fatty esters)

According to a classification scheme described by the American Chemistry Council' Aliphatic Esters Panel, Group D substances are esters of monoacids, mainly common fatty acids, and sorbitan (which is derived from sorbitol - a natural carbohydrate sweetener). The fatty acids include lauric, stearic, oleic acids and coca fatty acids (mainly lauric and myristic acids). The hydroxy group in the sorbitan represents the alcohol portion of the ester linkage. The Group D esters are carbohydrate-derived esters since the ester linkage is connected to the hydroxy group(s) of sorbitan. They may have single ester linkages (i.e., sorbitan monoester) or may have multiple ester linkages, as in the case of sorbitan sesquioleate and sorbitan trioleate. Multiple ester linkages with long-chain fatty acids increase lipophilicity and also tend to diminish water solubility. The sorbitan esters are non-ionic surfactant-active agents that typically find use as emulsifiers, stabilizers, and thickeners in foods, cosmetics and medical products.

Acute toxicity: Sorbitan esters do not represent a toxicological concern since they are derived from naturally occurring materials and the parent esters are ultimately metabolised back to these same natural constituents: namely, sorbitan and common fatty acids, both of which have low orders of toxicity. The oral LD50 in rats ranged from >2.9 g/kg to > 39.8 g/kg. Numerous sorbitan esters have been studied by acute oral and dermal administration. Results from these studies support the general conclusion that sorbitan fatty acid esters have low orders of acute toxicity.

Repeated Dose Toxicity. A large number of subchronic oral and dermal studies and chronic oral feeding studies have been carried out for sorbitan monolaurate, sorbitan monostearate and sorbitan monooleate, For sorbitan monostearate, no adverse effects were reported in rats fed 5% concentrations of the test substance in the diet for 6 weeks. The NOAEL was estimated to be 5% or approximately 2500 mg/kg/day. In 2-year feeding studies at 5, 10 and 20% in the diet rats tolerated sorbitan moonostearate with no adverse effects. However, at 20%, there was a small but significant decrease on growth rate in male rates. Hence, the NOAEL was 10% in the diet or approximately 5000 mg/kg/day in rats, based on these findings. In a 80-week dietary study in mice, no adverse effects were observed for sorbitan monostearate at 2% concentration in the diet and the NOAEL was 2% or approximately 2600 mg/kg/day. Subchronic studies have also been carried out with sorbitan, fatty acids C6-10, tetraester (CAS 228573-47-5). Oral gavage studies for 28 days at dose levels up to 1000 mg/kg/day resulted in no systemic toxicity. Therefore, the NOAEL was 1000 mg/kg/day for this tetraester.

Since the sesquioleate and trioleate of sorbitan are merely multiple ester homologs of sorbitan monooleate, they would be expected to show similar effects, given their structural similarities and potential to be metabolised to the monooleate.

Reproductive and developmental toxicity: Limited reproductive toxicity data have been reported for the sorbitan esters. In a 2-year feeding studies in rats with sorbitan monostearate, there were no effects on gestation and fertility at any dose level (0, 5, 10 and 20% in the diet) but survival of the newborn animals and maternal lactation were slightly diminished at the 20% level. Sorbitol was also studied indirectly as part of a mixture of hydrogenated starch hydrolysates (HSH) which contained about 7% sorbitol as part of the polyhydric alcohol mixture. The HSH mixture was investigated as part of a two-year ingestion study, a multigeneration reproduction study and a teratology study. At concentrations of 18% in drinking water (3000-7000 mg/kg/day), HSH did not produce reproductive or developmental effects. These results indicate that sorbitol does not cause reproductive/ developmental toxicity in animals. Given these findings and the low order of toxicity of natural fatty acids, it seems unlikely that sorbitan esters would present reproductive and developmental toxicity concerns.

Genotoxicity: Sorbitan monostearate (CAS 1338-41-6) was found to be negative in the Ames assay. In addition, the non-HPV substance, sorbitan fatty acid C6-10 tetraester (CAS 228573-47-5), did not cause any mutagenic effects in the Salmonella in vitro test. These substances bridge the low and high carbon range of most of the sorbitan esters and the chemistry of the sorbitan esters (i.e., sorbitan/sorbitol, natural fatty acids) does not suggest the likelihood that the sorbitan esters are electrophilic or reactive in nature. Thus, it is not likely that the substances in Group D cause mutagenic effects.

Sorbitan monostearate did not transform primary Syrian golden hamster embryo cells. As discussed above for point mutation, the chemistry of the sorbitan esters does not suggest the likelihood that these substances, or their constituent substructures (i.e., sorbitol, fatty acids) are reactive or electrophilic in nature.

The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Section 12 - ECOLOGICAL INFORMATION

No data

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- · Reduction
- · Reuse
- · Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible or consult manufacturer for recycling options.
- · Consult Waste Management Authority for disposal.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

sorbitan trioleate (CAS: 26266-58-0) is found on the following regulatory lists;

"International Fragrance Association (IFRA) Survey: Transparency List", "OECD Representative List of High Production Volume (HPV) Chemicals", "US Cosmetic Ingredient Review (CIR) Cosmetic ingredients found safe as used", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US EPA High Production Volume Program Chemical List", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Repeated exposure potentially causes skin dryness and cracking*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Sep-26-2009 Print Date:Nov-6-2010