AIF siRNA (h): sc-29193

The Power to Question

BACKGROUND

A key event in the apoptotic process is the opening of the mitochondrial permeability transition pore, an event that is regulated by Bcl-2 family proteins, resulting in the release of several proteins from the mitochondrial intermembrane space. Several of these proteins participate in apoptosis, including cytochrome c, procaspases 2, 3 and 9, and AlF (apoptosis-inducing factor). AlF has been shown to cause DNA fragmentation and chromatin condensation and to induce the release of cytochrome c and caspase-9 from mitochondria. Bcl-2 overexpression has been shown to prevent the release of AlF from mitochondria, but not to block its apoptogenic activity.

CHROMOSOMAL LOCATION

Genetic locus: AIFM1 (human) mapping to Xq26.1.

PRODUCT

AIF siRNA (h) is a target-specific 19-25 nt siRNA designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see AIF shRNA Plasmid (h): sc-29193-SH and AIF shRNA (h) Lentiviral Particles: sc-29193-V as alternate gene silencing products.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20 $^{\circ}$ C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20 $^{\circ}$ C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

AIF siRNA (h) is recommended for the inhibition of AIF expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

AIF (E-1): sc-13116 is recommended as a control antibody for monitoring of AIF gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor AIF gene expression knockdown using RT-PCR Primer: AIF (h)-PR: sc-29193-PR (20 μ I, 485 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

- 1. Skvortsova, I., et al. 2006. Rituximab enhances radiation-triggered apoptosis in non-Hodgkin's lymphoma cells via caspase-dependent and -independent mechanisms. J. Radiat. Res. 47: 183-196.
- Whiteman, M., et al. 2007. The pro-inflammatory oxidant hypochlorous acid induces Bax-dependent mitochondrial permeabilisation and cell death through AIF-/EndoG-dependent pathways. Cell. Signal. 19: 705-714.
- Yang, X., et al. 2008. Regulation of apoptosis-inducing factor-mediated, cisplatin-induced apoptosis by Akt. Br. J. Cancer 98: 803-808.
- Stendel, R., et al. 2009. The antibacterial substance taurolidine exhibits anti-neoplastic action based on a mixed type of programmed cell death. Autophagy 5: 194-210.
- Kumar, A., et al. 2011. A novel parthenin analog exhibits anti-cancer activity: activation of apoptotic signaling events through robust NO formation in human leukemia HL-60 cells. Chem. Biol. Interact. 193: 204-215.
- Khan, S., et al. 2012. A novel cyano derivative of 11-keto-β-boswellic acid causes apoptotic death by disrupting PI3K/Akt/Hsp-90 cascade, mitochondrial integrity, and other cell survival signaling events in HL-60 cells. Mol. Carcinog. 51: 679-695.
- Guo, X., et al. 2013. Enhanced apoptotic effects by the combination of curcumin and methylseleninic acid: potential role of McI-1 and FAK. Mol. Carcinog. 52: 879-889.
- Tsai, J.R., et al. 2014. Magnolol induces apoptosis via caspase-independent pathways in non-small cell lung cancer cells. Arch. Pharm. Res. 37: 548-557.
- 9. Cho, S.Y., et al. 2015. Cystamine induces AIF-mediated apoptosis through glutathione depletion. Biochim. Biophys. Acta 1853: 619-631.
- Shimizu, T., et al. 2016. Agarol, an ergosterol derivative from *Agaricus blazei*, induces caspase-independent apoptosis in human cancer cells. Int. J. Oncol. 48: 1670-1678.
- 11. Woo, S.M., et al. 2018. Corosolic acid induces non-apoptotic cell death through generation of lipid reactive oxygen species production in human renal carcinoma Caki cells. Int. J. Mol. Sci. 19: 1309.
- 12. Min, K.J., et al. 2020. Arylquin 1, a potent Par-4 secretagogue, induces lysosomal membrane permeabilization-mediated non-apoptotic cell death in cancer cells. Toxicol. Res. 36: 167-173.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3800 fax 831.457.3801 **Europe** +00800 4573 8000 49 6221 4503 0 **www.scbt.com**