SANTA CRUZ BIOTECHNOLOGY, INC.

EAAT4 (6D9): sc-293344

BACKGROUND

Excitatory amino acid transporters (EAATs) are membrane-bound proteins that are localized in glial cells and pre-synaptic glutamatergic nerve endings. EAATs transport the excitatory neurotransmitters L-glutamate and D-aspartate, a process that is essential for terminating the postsynaptic action of glutamate. The re-uptake of amino acid neurotransmitters by EAAT proteins has been shown to protect neurons from excitotoxicity, which is caused by the accumulation of amino acid neurotransmitters. EAAT4 is an aspartate/glutamate transporter that is expressed predominantly in the cerebellum. The transport activity encoded by EAAT4 has high apparent affinity for L-aspartate and L-glutamate, and has a pharmacologic profile consistent with previously described cerebellar transport activities. EAAT5 is a glutamate transporter coupled to a chloride conductance which is expressed primarily in retina. Although EAAT5 shares the structural homologies of the EAAT family, a novel feature of the EAAT5 sequence is a carboxy-terminal motif previously identified in N-ethyl-Daspartate receptors and potassium channels and shown to confer interactions with a family of synaptic proteins that promote ion channel clustering.

REFERENCES

- Arriza, J.L., et al. 1994. Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex. J. Neurosci. 14: 5559-5569.
- Fairman, W.A., et al. 1995. An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375: 599-603.
- Ikeda, J., et al. 1996. Nuclear disintegration as a leading step of glutamate excitotoxicity in brain neurons. J. Neurosci. Res. 43: 613-622.
- Arriza, J.L., et al. 1997. Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl. Acad. Sci. USA 94: 4155-4160.
- Rauen, T., et al. 1998. High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance. Cell Tissue Res. 291: 19-31.
- Jackson, M., et al. 2001. Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature 410: 89-93.

CHROMOSOMAL LOCATION

Genetic locus: SLC1A6 (human) mapping to 19p13.12; Slc1a6 (mouse) mapping to 10 C1.

SOURCE

EAAT4 (6D9) is a mouse monoclonal antibody raised against amino acids 500-564 of EAAT4 of human origin.

PRODUCT

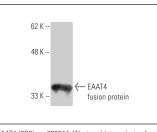
Each vial contains 100 μg lgG_1 kappa light chain in 1.0 ml of PBS with < 0.1% sodium azide and 0.1% gelatin.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

APPLICATIONS

EAAT4 (6D9) is recommended for detection of EAAT4 of mouse, rat and human origin by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000), immunoprecipitation [1-2 μ g per 100-500 μ g of total protein (1 ml of cell lysate)] and solid phase ELISA (starting dilution 1:30, dilution range 1:30-1:3000).


Suitable for use as control antibody for EAAT4 siRNA (h): sc-41942, EAAT4 siRNA (m): sc-41943, EAAT4 shRNA Plasmid (h): sc-41942-SH, EAAT4 shRNA Plasmid (m): sc-41943-SH, EAAT4 shRNA (h) Lentiviral Particles: sc-41942-V and EAAT4 shRNA (m) Lentiviral Particles: sc-41943-V.

Molecular Weight of EAAT4: 67 kDa.

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-IgG κ BP-HRP: sc-516102 or m-IgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunoprecipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml).

DATA

EAAT4 (6D9): sc-293344. Western blot analysis of human recombinant EAAT4 fusion protein.

SELECT PRODUCT CITATIONS

 Martín-Hernández, D., et al. 2019. Chronic mild stress alters kynurenine pathways changing the glutamate neurotransmission in frontal cortex of rats. Mol. Neurobiol. 56: 490-501.

STORAGE

Store at 4° C, **D0 NOT FREEZE**. Stable for one year from the date of shipment. Non-hazardous. No MSDS required.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.